These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21969072)

  • 1. Acute airway irritation of methyl formate in mice.
    Larsen ST; Nielsen GD
    Arch Toxicol; 2012 Feb; 86(2):285-92. PubMed ID: 21969072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper airway and pulmonary effects of oxidation products of (+)-alpha-pinene, d-limonene, and isoprene in BALB/c mice.
    Rohr AC; Wilkins CK; Clausen PA; Hammer M; Nielsen GD; Wolkoff P; Spengler JD
    Inhal Toxicol; 2002 Jul; 14(7):663-84. PubMed ID: 12122569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory and pulmonary irritation with exposure to methyl isocyanate.
    Ferguson JS; Schaper M; Stock MF; Weyel DA; Alarie Y
    Toxicol Appl Pharmacol; 1986 Feb; 82(2):329-35. PubMed ID: 3945958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute airway effects of diacetyl in mice.
    Larsen ST; Alarie Y; Hammer M; Nielsen GD
    Inhal Toxicol; 2009 Nov; 21(13):1123-8. PubMed ID: 19852554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of acute inhalation effects of (+) and (-)-alpha-pinene in BALB/c mice.
    Nielsen GD; Larsen ST; Hougaard KS; Hammer M; Wolkoff P; Clausen PA; Wilkins CK; Alarie Y
    Basic Clin Pharmacol Toxicol; 2005 Jun; 96(6):420-8. PubMed ID: 15910405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanosized TiO₂ caused minor airflow limitation in the murine airways.
    Leppänen M; Korpi A; Miettinen M; Leskinen J; Torvela T; Rossi EM; Vanhala E; Wolff H; Alenius H; Kosma VM; Joutsensaari J; Jokiniemi J; Pasanen P
    Arch Toxicol; 2011 Jul; 85(7):827-39. PubMed ID: 21259060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory irritation as a basis for setting occupational exposure limits.
    Brüning T; Bartsch R; Bolt HM; Desel H; Drexler H; Gundert-Remy U; Hartwig A; Jäckh R; Leibold E; Pallapies D; Rettenmeier AW; Schlüter G; Stropp G; Sucker K; Triebig G; Westphal G; van Thriel C
    Arch Toxicol; 2014 Oct; 88(10):1855-79. PubMed ID: 25182421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pollutant exposures and health symptoms in aircrew and office workers: Is there a link?
    Wolkoff P; Crump DR; Harrison PT
    Environ Int; 2016 Feb; 87():74-84. PubMed ID: 26641522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicokinetic modelling of methyl formate exposure and implications for biological monitoring.
    Nihlén A; Droz PO
    Int Arch Occup Environ Health; 2000 Sep; 73(7):479-87. PubMed ID: 11057417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute respiratory responses of the mouse to chlorine.
    Morris JB; Wilkie WS; Shusterman DJ
    Toxicol Sci; 2005 Feb; 83(2):380-7. PubMed ID: 15548641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urinary methanol and formic acid as indicators of occupational exposure to methyl formate.
    Berode M; Sethre T; Läubli T; Savolainen H
    Int Arch Occup Environ Health; 2000 Aug; 73(6):410-4. PubMed ID: 11007345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute airway effects of ozone-initiated d-limonene chemistry: importance of gaseous products.
    Wolkoff P; Clausen PA; Larsen K; Hammer M; Larsen ST; Nielsen GD
    Toxicol Lett; 2008 Oct; 181(3):171-6. PubMed ID: 18723085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of neurotoxic effects of tri-cresyl phosphates (TCPs) and cresyl saligenin phosphate (CBDP) using a combination of in vitro techniques.
    Hausherr V; Schöbel N; Liebing J; van Thriel C
    Neurotoxicology; 2017 Mar; 59():210-221. PubMed ID: 27288108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative assessment of the sensory irritation potency in mice and rats nose-only exposed to ammonia in dry and humidified atmospheres.
    Li WL; Pauluhn J
    Toxicology; 2010 Oct; 276(2):135-42. PubMed ID: 20692317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impairment of glutamate signaling in mouse central nervous system neurons in vitro by tri-ortho-cresyl phosphate at noncytotoxic concentrations.
    Hausherr V; van Thriel C; Krug A; Leist M; Schöbel N
    Toxicol Sci; 2014 Nov; 142(1):274-84. PubMed ID: 25199799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of methacrolein on the respiratory tract in mice.
    Larsen ST; Nielsen GD
    Toxicol Lett; 2000 Apr; 114(1-3):197-202. PubMed ID: 10713485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airway effects of repeated exposures to ozone-initiated limonene oxidation products as model of indoor air mixtures.
    Wolkoff P; Clausen PA; Larsen ST; Hammer M; Nielsen GD
    Toxicol Lett; 2012 Mar; 209(2):166-72. PubMed ID: 22212438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory irritation mechanisms investigated from model compounds: trifluoroethanol, hexafluoroisopropanol and methyl hexafluoroisopropyl ether.
    Nielsen GD; Abraham MH; Hansen LF; Hammer M; Cooksey CJ; Andonian-Haftvan J; Alarie Y
    Arch Toxicol; 1996; 70(6):319-28. PubMed ID: 8975630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of airborne sensory irritants for setting exposure limits or guidelines: A systematic approach.
    Nielsen GD; Wolkoff P
    Regul Toxicol Pharmacol; 2017 Nov; 90():308-317. PubMed ID: 28911939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhaled formaldehyde: evaluation of sensory irritation in relation to carcinogenicity.
    Arts JH; Rennen MA; de Heer C
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):144-60. PubMed ID: 16413643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.