These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21969303)

  • 1. Measurement of ocular fundus pulsation in healthy subjects using a novel Fourier-domain optical coherence tomography.
    Singh K; Dion C; Wajszilber M; Ozaki T; Lesk MR; Costantino S
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):8927-32. PubMed ID: 21969303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a novel instrument to measure the pulsatile movement of ocular tissues.
    Singh K; Dion C; Costantino S; Wajszilber M; Lesk MR; Ozaki T
    Exp Eye Res; 2010 Jul; 91(1):63-8. PubMed ID: 20398654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsatile movement of the optic nerve head and the peripapillary retina in normal subjects and in glaucoma.
    Singh K; Dion C; Godin AG; Lorghaba F; Descovich D; Wajszilber M; Ozaki T; Costantino S; Lesk MR
    Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7819-24. PubMed ID: 23099495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison between laser interferometric measurement of fundus pulsation and pneumotonometric measurement of pulsatile ocular blood flow. 1. Baseline considerations.
    Schmetterer L; Dallinger S; Findl O; Eichler HG; Wolzt M
    Eye (Lond); 2000 Feb; 14 ( Pt 1)():39-45. PubMed ID: 10755098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability and reproducibility of assessment of corneal epithelial thickness by fourier domain optical coherence tomography.
    Prakash G; Agarwal A; Mazhari AI; Chari M; Kumar DA; Kumar G; Singh B
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2580-5. PubMed ID: 22427573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability.
    Prakash G; Agarwal A; Jacob S; Kumar DA; Agarwal A; Banerjee R
    Am J Ophthalmol; 2009 Aug; 148(2):282-290.e2. PubMed ID: 19442961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.
    de Kinkelder R; Kalkman J; Faber DJ; Schraa O; Kok PH; Verbraak FD; van Leeuwen TG
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3908-13. PubMed ID: 21467182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison between laser interferometric measurement of fundus pulsation and pneumotonometric measurement of pulsatile ocular blood flow. 2. Effects of changes in pCO2 and pO2 and of isoproterenol.
    Schmetterer L; Dallinger S; Findl O; Graselli U; Eichler HG; Wolzt M
    Eye (Lond); 2000 Feb; 14 ( Pt 1)():46-52. PubMed ID: 10755099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On pulse-wave propagation in the ocular circulation.
    Gugleta K; Kochkorov A; Katamay R; Zawinka C; Flammer J; Orgul S
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):4019-25. PubMed ID: 16936118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography.
    Werkmeister RM; Dragostinoff N; Palkovits S; Told R; Boltz A; Leitgeb RA; Gröschl M; Garhöfer G; Schmetterer L
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6062-71. PubMed ID: 22893675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of perimacular inner retinal layer thickness in normal eyes measured by Fourier-domain optical coherence tomography.
    Kim NR; Kim JH; Lee J; Lee ES; Seong GJ; Kim CY
    Invest Ophthalmol Vis Sci; 2011 May; 52(6):3413-8. PubMed ID: 21357406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic in vivo measurement of ocular surface expansion.
    Kowalska MA; Kasprzak HT; Iskander DR; Danielewska M; Mas D
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):674-80. PubMed ID: 21177153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects.
    Tayyari F; Yusof F; Vymyslicky M; Tan O; Huang D; Flanagan JG; Hudson C
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):7716-25. PubMed ID: 25335983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography.
    Hirata M; Tsujikawa A; Matsumoto A; Hangai M; Ooto S; Yamashiro K; Akiba M; Yoshimura N
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):4971-8. PubMed ID: 21622704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of ocular rigidity based on measurement of pulse amplitude using pneumotonometry and fundus pulse using laser interferometry in glaucoma.
    Hommer A; Fuchsjäger-Mayrl G; Resch H; Vass C; Garhofer G; Schmetterer L
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):4046-50. PubMed ID: 18487379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography.
    Miura M; Makita S; Iwasaki T; Yasuno Y
    Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):7137-41. PubMed ID: 22997290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of three different optical coherence tomography models for total macular thickness measurements in healthy controls.
    Menke MN; Dabov S; Sturm V
    Ophthalmologica; 2009; 223(6):352-6. PubMed ID: 19571601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra and interoperator reproducibility of retinal nerve fibre and macular thickness measurements using Cirrus Fourier-domain OCT.
    Garcia-Martin E; Pinilla I; Idoipe M; Fuertes I; Pueyo V
    Acta Ophthalmol; 2011 Feb; 89(1):e23-9. PubMed ID: 21106044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography.
    Tan CS; Ouyang Y; Ruiz H; Sadda SR
    Invest Ophthalmol Vis Sci; 2012 Jan; 53(1):261-6. PubMed ID: 22167095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis).
    Grover S; Murthy RK; Brar VS; Chalam KV
    Am J Ophthalmol; 2009 Aug; 148(2):266-71. PubMed ID: 19427616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.