BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 21969544)

  • 1. Binding of blood proteins to carbon nanotubes reduces cytotoxicity.
    Ge C; Du J; Zhao L; Wang L; Liu Y; Li D; Yang Y; Zhou R; Zhao Y; Chai Z; Chen C
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16968-73. PubMed ID: 21969544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of human serum albumin on functionalized single-walled carbon nanotubes reduced cytotoxicity.
    Lu N; Sui Y; Ding Y; Tian R; Li L; Liu F
    Chem Biol Interact; 2018 Nov; 295():64-72. PubMed ID: 29601805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrinogen binding-dependent cytotoxicity and degradation of single-walled carbon nanotubes.
    Lu N; Sui Y; Ding Y; Tian R; Peng YY
    J Mater Sci Mater Med; 2018 Jul; 29(8):115. PubMed ID: 30019251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of Plasma Proteins on Single-Walled Carbon Nanotubes Reduced Cytotoxicity and Modulated Neutrophil Activation.
    Lu N; Sui Y; Tian R; Peng YY
    Chem Res Toxicol; 2018 Oct; 31(10):1061-1068. PubMed ID: 30207453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.
    Lu N; Li J; Tian R; Peng YY
    Chem Res Toxicol; 2014 Jun; 27(6):1070-7. PubMed ID: 24870066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of serum albumin on the degradation and cytotoxicity of single-walled carbon nanotubes.
    Ding Y; Tian R; Yang Z; Chen J; Lu N
    Biophys Chem; 2017 Mar; 222():1-6. PubMed ID: 28042968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced Cytotoxicity of Graphene Nanosheets Mediated by Blood-Protein Coating.
    Chong Y; Ge C; Yang Z; Garate JA; Gu Z; Weber JK; Liu J; Zhou R
    ACS Nano; 2015 Jun; 9(6):5713-24. PubMed ID: 26040772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of a bovine serum albumin diligand complex with rutin and single-walled carbon nanotubes for the reduction of cytotoxicity.
    Tian R; Long X; Yang Z; Lu N; Peng YY
    Biophys Chem; 2020 Jan; 256():106268. PubMed ID: 31707064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials.
    Dutta D; Sundaram SK; Teeguarden JG; Riley BJ; Fifield LS; Jacobs JM; Addleman SR; Kaysen GA; Moudgil BM; Weber TJ
    Toxicol Sci; 2007 Nov; 100(1):303-15. PubMed ID: 17709331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy.
    Gerasimenko AY; Ten GN; Ryabkin DI; Shcherbakova NE; Morozova EA; Ichkitidze LP
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117682. PubMed ID: 31672377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of functionalization of carbon nanotubes with psychosine on complement activation and protein adsorption.
    Rybak-Smith MJ; Tripisciano C; Borowiak-Palen E; Lamprecht C; Sim RB
    J Biomed Nanotechnol; 2011 Dec; 7(6):830-9. PubMed ID: 22416583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of a Diligand Complex of Bovine Serum Albumin with Quercetin and Carbon Nanotubes for the Protection of Bioactive Quercetin and Reduction of Cytotoxicity.
    Lu N; Sui Y; Zeng L; Tian R; Peng YY
    J Agric Food Chem; 2018 Aug; 66(31):8355-8362. PubMed ID: 30016096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MWCNT interactions with protein: surface-induced changes in protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity.
    Zhang T; Tang M; Yao Y; Ma Y; Pu Y
    Int J Nanomedicine; 2019; 14():993-1009. PubMed ID: 30799918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of serum proteins with carbon nanotubes depend on the physicochemical properties of nanotubes.
    Du J; Ge C; Liu Y; Bai R; Li D; Yang Y; Liao L; Chen C
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10102-10. PubMed ID: 22413351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of plasma proteins onto PEGylated single-walled carbon nanotubes: The effects of protein shape, PEG size and grafting density.
    Lee H
    J Mol Graph Model; 2017 Aug; 75():1-8. PubMed ID: 28501530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin.
    Lou K; Zhu Z; Zhang H; Wang Y; Wang X; Cao J
    Chem Biol Interact; 2016 Jan; 243():54-61. PubMed ID: 26626329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of non-covalent single-walled carbon nanotube functionalization with surfactant peptides.
    Barzegar A; Mansouri A; Azamat J
    J Mol Graph Model; 2016 Mar; 64():75-84. PubMed ID: 26811869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Not all protein-mediated single-wall carbon nanotube dispersions are equally bioactive.
    Holt BD; McCorry MC; Boyer PD; Dahl KN; Islam MF
    Nanoscale; 2012 Dec; 4(23):7425-34. PubMed ID: 23086474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes of fibrinogen in dispersed carbon nanotubes.
    Park SJ; Khang D
    Int J Nanomedicine; 2012; 7():4325-33. PubMed ID: 22915854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and adhesion of blood proteins and fibroblasts on multi-wall carbon nanotubes.
    Li D; Yuan L; Yang Y; Deng X; Lü X; Huang Y; Cao Z; Liu H; Sun X
    Sci China C Life Sci; 2009 May; 52(5):479-82. PubMed ID: 19471872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.