These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 21969562)

  • 1. Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs.
    Amézquita A; Flechas SV; Lima AP; Gasser H; Hödl W
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17058-63. PubMed ID: 21969562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using citizen science to test for acoustic niche partitioning in frogs.
    Allen-Ankins S; Schwarzkopf L
    Sci Rep; 2022 Feb; 12(1):2447. PubMed ID: 35165349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Masking interference and the evolution of the acoustic communication system in the Amazonian dendrobatid frog Allobates femoralis.
    Amézquita A; Hödl W; Lima AP; Castellanos L; Erdtmann L; de Araújo MC
    Evolution; 2006 Sep; 60(9):1874-87. PubMed ID: 17089972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the environment shapes animal signals: a test of the acoustic adaptation hypothesis in frogs.
    Goutte S; Dubois A; Howard SD; Márquez R; Rowley JJL; Dehling JM; Grandcolas P; Xiong RC; Legendre F
    J Evol Biol; 2018 Jan; 31(1):148-158. PubMed ID: 29150984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torrent frogs emit acoustic signals of a narrower spectral range in habitats with longer-lasting biotic background noise.
    Forti LR; de Melo Sampaio MR; Pires CR; Szabo JK; Toledo LF
    Behav Processes; 2022 Aug; 200():104700. PubMed ID: 35798216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stream noise, hybridization, and uncoupled evolution of call traits in two lineages of poison frogs: Oophaga histrionica and Oophaga lehmanni.
    Vargas-Salinas F; Amézquita A
    PLoS One; 2013; 8(10):e77545. PubMed ID: 24194888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Call transmission efficiency in native and invasive anurans: competing hypotheses of divergence in acoustic signals.
    Llusia D; Gómez M; Penna M; Márquez R
    PLoS One; 2013; 8(10):e77312. PubMed ID: 24155940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended amplification of acoustic signals by amphibian burrows.
    Muñoz MI; Penna M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jul; 202(7):473-87. PubMed ID: 27209276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of phonotactic preferences of female frogs and its consequences for signal evolution.
    Velásquez NA; Valdés JL; Vásquez RA; Penna M
    Behav Processes; 2015 Sep; 118():76-84. PubMed ID: 26051194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoupled Evolution between Senders and Receivers in the Neotropical Allobates femoralis Frog Complex.
    Betancourth-Cundar M; Lima AP; Hӧdl W; Amézquita A
    PLoS One; 2016; 11(6):e0155929. PubMed ID: 27276054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of bioacoustical traits in the genus Physalaemus Fitzinger, 1826 (Anura: Leptodactylidae: Leiuperinae).
    Hepp F; Pombal JPJ
    Zootaxa; 2020 Jan; 4725(1):zootaxa.4725.1.1. PubMed ID: 32230594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ample active acoustic space of a frog from the South American temperate forest.
    Penna M; Moreno-Gómez FN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Mar; 200(3):171-81. PubMed ID: 24356786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sexual selection in female perceptual space: how female túngara frogs perceive and respond to complex population variation in acoustic mating signals.
    Ryan MJ; Rand AS
    Evolution; 2003 Nov; 57(11):2608-18. PubMed ID: 14686535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advertisement-call preferences in diploid-tetraploid treefrogs (Hyla chrysoscelis and Hyla versicolor): implications for mate choice and the evolution of communication systems.
    Gerhardt HC
    Evolution; 2005 Feb; 59(2):395-408. PubMed ID: 15807424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of temporal call structure in species recognition of male
    Kollarits D; Wappl C; Ringler M
    Herpetozoa; 2017 Jan; 29(3-4):115-124. PubMed ID: 28239241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing the evolution of acoustic communication: biological constraints.
    Ryan MJ
    Brain Behav Evol; 1986; 28(1-3):70-82. PubMed ID: 3567542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neotropical frogs and mating songs: The evolution of advertisement calls in glassfrogs.
    Escalona Sulbarán MD; Ivo Simões P; Gonzalez-Voyer A; Castroviejo-Fisher S
    J Evol Biol; 2019 Feb; 32(2):163-176. PubMed ID: 30481406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs.
    Both C; Grant T
    Biol Lett; 2012 Oct; 8(5):714-6. PubMed ID: 22675139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Call intercalation in dyadic interactions in natural choruses of Johnstone's whistling frog Eleutherodactylus johnstonei (Anura: Eleutherodactylidae).
    Tárano Z; Carballo L
    Behav Processes; 2016 May; 126():55-63. PubMed ID: 26988233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vocal responses of austral forest frogs to amplitude and degradation patterns of advertisement calls.
    Penna M; Moreno-Gómez FN; Muñoz MI; Cisternas J
    Behav Processes; 2017 Jul; 140():190-201. PubMed ID: 28512036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.