These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21969566)

  • 41. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization.
    Spellman PT; Sherlock G; Zhang MQ; Iyer VR; Anders K; Eisen MB; Brown PO; Botstein D; Futcher B
    Mol Biol Cell; 1998 Dec; 9(12):3273-97. PubMed ID: 9843569
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitation of alpha-factor internalization and response during the Saccharomyces cerevisiae cell cycle.
    Zanolari B; Riezman H
    Mol Cell Biol; 1991 Oct; 11(10):5251-8. PubMed ID: 1656226
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overproduction of the yeast STE12 protein leads to constitutive transcriptional induction.
    Dolan JW; Fields S
    Genes Dev; 1990 Apr; 4(4):492-502. PubMed ID: 2193847
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Separation of factors required for cleavage and polyadenylation of yeast pre-mRNA.
    Chen J; Moore C
    Mol Cell Biol; 1992 Aug; 12(8):3470-81. PubMed ID: 1352851
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of sequence elements that confer cell-type-specific control of MF alpha 1 expression in Saccharomyces cerevisiae.
    Inokuchi K; Nakayama A; Hishinuma F
    Mol Cell Biol; 1987 Sep; 7(9):3185-93. PubMed ID: 2959859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural basis for the dimerization of Nab2 generated by RNA binding provides insight into its contribution to both poly(A) tail length determination and transcript compaction in Saccharomyces cerevisiae.
    Aibara S; Gordon JM; Riesterer AS; McLaughlin SH; Stewart M
    Nucleic Acids Res; 2017 Feb; 45(3):1529-1538. PubMed ID: 28180315
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast.
    Kastaniotis AJ; Mennella TA; Konrad C; Torres AM; Zitomer RS
    Mol Cell Biol; 2000 Oct; 20(19):7088-98. PubMed ID: 10982825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dominant negative mutations in the alpha-factor receptor, a G protein-coupled receptor encoded by the STE2 gene of the yeast Saccharomyces cerevisiae.
    Leavitt LM; Macaluso CR; Kim KS; Martin NP; Dumont ME
    Mol Gen Genet; 1999 Jul; 261(6):917-32. PubMed ID: 10485282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional domains of a peptide hormone receptor: the alpha-factor receptor (STE2 gene product) of the yeast Saccharomyces cerevisiae.
    Blumer KJ; Reneke JE; Courchesne WE; Thorner J
    Cold Spring Harb Symp Quant Biol; 1988; 53 Pt 2():591-603. PubMed ID: 2855497
    [No Abstract]   [Full Text] [Related]  

  • 50. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle.
    Oehlen LJ; Cross FR
    Genes Dev; 1994 May; 8(9):1058-70. PubMed ID: 7926787
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Different positioning elements select poly(A) sites at the 3'-end of GCN4 mRNA in the yeast Saccharomyces cerevisiae.
    Düvel K; Braus GH
    Nucleic Acids Res; 1999 Dec; 27(24):4751-8. PubMed ID: 10572175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcription elongation factors repress transcription initiation from cryptic sites.
    Kaplan CD; Laprade L; Winston F
    Science; 2003 Aug; 301(5636):1096-9. PubMed ID: 12934008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Defects in mRNA 3'-end formation, transcription initiation, and mRNA transport associated with the yeast mutation prp20: possible coupling of mRNA processing and chromatin structure.
    Forrester W; Stutz F; Rosbash M; Wickens M
    Genes Dev; 1992 Oct; 6(10):1914-26. PubMed ID: 1398069
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The mating response cascade does not modulate changes in the steady-state level of target mRNAs through control of mRNA stability.
    Kitchen CM; Leung SW; Corbett AH; Murphy TJ
    Yeast; 2009 May; 26(5):261-72. PubMed ID: 19319831
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Yeast Gal11 protein mediates the transcriptional activation signal of two different transacting factors, Gal4 and general regulatory factor I/repressor/activator site binding protein 1/translation upstream factor.
    Nishizawa M; Suzuki Y; Nogi Y; Matsumoto K; Fukasawa T
    Proc Natl Acad Sci U S A; 1990 Jul; 87(14):5373-7. PubMed ID: 2196565
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Induction of the yeast alpha-specific STE3 gene by the peptide pheromone a-factor.
    Hagen DC; Sprague GF
    J Mol Biol; 1984 Oct; 178(4):835-52. PubMed ID: 6436496
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nucleotide sequences of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae.
    Nakayama N; Miyajima A; Arai K
    EMBO J; 1985 Oct; 4(10):2643-8. PubMed ID: 16453635
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cryptic polyadenylation sites within the coding sequence of three yeast genes expressed in tobacco.
    Grec S; Wang Y; Le Guen L; Negrouk V; Boutry M
    Gene; 2000 Jan; 242(1-2):87-95. PubMed ID: 10721700
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell-type-dependent repression of yeast a-specific genes requires Itc1p, a subunit of the Isw2p-Itc1p chromatin remodelling complex.
    Ruiz C; Escribano V; Morgado E; Molina M; Mazón MJ
    Microbiology (Reading); 2003 Feb; 149(Pt 2):341-351. PubMed ID: 12624196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of transcription factor Kar4 in regulating downstream events in the Saccharomyces cerevisiae pheromone response pathway.
    Lahav R; Gammie A; Tavazoie S; Rose MD
    Mol Cell Biol; 2007 Feb; 27(3):818-29. PubMed ID: 17101777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.