These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21969580)

  • 41. Dryadomyces amasae: a nutritional fungus associated with ambrosia beetles of the genus Amasa (Coleoptera: Curculionidae, Scolytinae).
    Gebhardt H; Weiss M; Oberwinkler F
    Mycol Res; 2005 Jun; 109(Pt 6):687-96. PubMed ID: 16080391
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altered Carbohydrates Allocation by Associated Bacteria-fungi Interactions in a Bark Beetle-microbe Symbiosis.
    Zhou F; Lou Q; Wang B; Xu L; Cheng C; Lu M; Sun J
    Sci Rep; 2016 Feb; 6():20135. PubMed ID: 26839264
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lipids and small metabolites provisioned by ambrosia fungi to symbiotic beetles are phylogeny-dependent, not convergent.
    Huang YT; Skelton J; Hulcr J
    ISME J; 2020 May; 14(5):1089-1099. PubMed ID: 31988472
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for social parasitism of early insect societies by Cretaceous rove beetles.
    Yamamoto S; Maruyama M; Parker J
    Nat Commun; 2016 Dec; 7():13658. PubMed ID: 27929066
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relationships among wood-boring beetles, fungi, and the decomposition of forest biomass.
    Skelton J; Jusino MA; Carlson PS; Smith K; Banik MT; Lindner DL; Palmer JM; Hulcr J
    Mol Ecol; 2019 Nov; 28(22):4971-4986. PubMed ID: 31596982
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative Meta-analysis Effects of Nonnative Ants (Hymenoptera: Formicidae), Ground Beetles (Coleoptera: Carabidae), and Bark and Ambrosia Beetles (Coleoptera: Curculionidae) on Native Confamilials.
    Hartshorn JA; Coyle DR
    Environ Entomol; 2021 Jun; 50(3):622-632. PubMed ID: 33822028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus.
    Ishangulyyeva G; Najar A; Curtis JM; Erbilgin N
    PLoS One; 2016; 11(9):e0162046. PubMed ID: 27583820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes.
    Blaz J; Barrera-Redondo J; Vázquez-Rosas-Landa M; Canedo-Téxon A; Aguirre von Wobeser E; Carrillo D; Stouthamer R; Eskalen A; Villafán E; Alonso-Sánchez A; Lamelas A; Ibarra-Juarez LA; Pérez-Torres CA; Ibarra-Laclette E
    Life (Basel); 2018 Dec; 9(1):. PubMed ID: 30583535
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Maximizing Bark and Ambrosia Beetle (Coleoptera: Curculionidae) Catches in Trapping Surveys for Longhorn and Jewel Beetles.
    Marchioro M; Rassati D; Faccoli M; Van Rooyen K; Kostanowicz C; Webster V; Mayo P; Sweeney J
    J Econ Entomol; 2020 Dec; 113(6):2745-2757. PubMed ID: 32964240
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of anchor-tipped larval hairs in the organization of ant colonies.
    Penick CA; Copple RN; Mendez RA; Smith AA
    PLoS One; 2012; 7(7):e41595. PubMed ID: 22848539
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Symbiotic yeasts from the mycangium, larval gut and woody substrate of an African stag beetle Xiphodontus antilope (Coleoptera: Lucanidae).
    Roets F; Oberlander KC
    Antonie Van Leeuwenhoek; 2020 Aug; 113(8):1123-1134. PubMed ID: 32318983
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cycloheximide-Producing
    Grubbs KJ; Surup F; Biedermann PHW; McDonald BR; Klassen JL; Carlson CM; Clardy J; Currie CR
    Front Microbiol; 2020; 11():562140. PubMed ID: 33101237
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microbiome-assisted carrion preservation aids larval development in a burying beetle.
    Shukla SP; Plata C; Reichelt M; Steiger S; Heckel DG; Kaltenpoth M; Vilcinskas A; Vogel H
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11274-11279. PubMed ID: 30322931
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ecology and Evolution of Insect-Fungus Mutualisms.
    Biedermann PHW; Vega FE
    Annu Rev Entomol; 2020 Jan; 65():431-455. PubMed ID: 31610133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptive evolution of synchronous egg-hatching in compensation for the loss of parental care.
    Jarrett BJM; Rebar D; Haynes HB; Leaf MR; Halliwell C; Kemp R; Kilner RM
    Proc Biol Sci; 2018 Aug; 285(1885):. PubMed ID: 30158310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using Experimental Evolution to Study Adaptations for Life within the Family.
    Schrader M; Jarrett BJ; Kilner RM
    Am Nat; 2015 May; 185(5):610-9. PubMed ID: 25905504
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Delayed dispersal and prolonged brood care in a family-living beetle.
    Dillard JR; Maigret TA
    J Evol Biol; 2017 Dec; 30(12):2230-2243. PubMed ID: 28981168
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Group demography affects ant colony performance and individual speed of queen and worker aging.
    Giehr J; Heinze J; Schrempf A
    BMC Evol Biol; 2017 Aug; 17(1):173. PubMed ID: 28764664
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial and Climatic Factors Influence Ambrosia Beetle (Coleoptera: Curculionidae) Abundance in Intensively Managed Plantations of Eastern Black Walnut.
    Williams GM; Ginzel MD
    Environ Entomol; 2020 Feb; 49(1):49-58. PubMed ID: 31746336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae.
    Shukla SP; Sanders JG; Byrne MJ; Pierce NE
    Mol Ecol; 2016 Dec; 25(24):6092-6106. PubMed ID: 27801992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.