These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 21969591)
1. Maintenance of hormone responsiveness in luminal breast cancers by suppression of Notch. Haughian JM; Pinto MP; Harrell JC; Bliesner BS; Joensuu KM; Dye WW; Sartorius CA; Tan AC; Heikkilä P; Perou CM; Horwitz KB Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2742-7. PubMed ID: 21969591 [TBL] [Abstract][Full Text] [Related]
2. Modeling luminal breast cancer heterogeneity: combination therapy to suppress a hormone receptor-negative, cytokeratin 5-positive subpopulation in luminal disease. Knox AJ; Scaling AL; Pinto MP; Bliesner BS; Haughian JM; Abdel-Hafiz HA; Horwitz KB Breast Cancer Res; 2014 Aug; 16(4):418. PubMed ID: 25116921 [TBL] [Abstract][Full Text] [Related]
3. Luminal breast cancer metastases and tumor arousal from dormancy are promoted by direct actions of estradiol and progesterone on the malignant cells. Ogba N; Manning NG; Bliesner BS; Ambler SK; Haughian JM; Pinto MP; Jedlicka P; Joensuu K; Heikkilä P; Horwitz KB Breast Cancer Res; 2014 Dec; 16(6):489. PubMed ID: 25475897 [TBL] [Abstract][Full Text] [Related]
4. Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Kabos P; Haughian JM; Wang X; Dye WW; Finlayson C; Elias A; Horwitz KB; Sartorius CA Breast Cancer Res Treat; 2011 Jul; 128(1):45-55. PubMed ID: 20665103 [TBL] [Abstract][Full Text] [Related]
5. Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties. Axlund SD; Yoo BH; Rosen RB; Schaack J; Kabos P; Labarbera DV; Sartorius CA Horm Cancer; 2013 Feb; 4(1):36-49. PubMed ID: 23184698 [TBL] [Abstract][Full Text] [Related]
6. Breast Cancer Suppression by Progesterone Receptors Is Mediated by Their Modulation of Estrogen Receptors and RNA Polymerase III. Finlay-Schultz J; Gillen AE; Brechbuhl HM; Ivie JJ; Matthews SB; Jacobsen BM; Bentley DL; Kabos P; Sartorius CA Cancer Res; 2017 Sep; 77(18):4934-4946. PubMed ID: 28729413 [TBL] [Abstract][Full Text] [Related]
7. A high-content assay to identify small-molecule modulators of a cancer stem cell population in luminal breast cancer. Yoo BH; Axlund SD; Kabos P; Reid BG; Schaack J; Sartorius CA; LaBarbera DV J Biomol Screen; 2012 Oct; 17(9):1211-20. PubMed ID: 22751729 [TBL] [Abstract][Full Text] [Related]
8. Estrogen receptor (ER) mRNA expression and molecular subtype distribution in ER-negative/progesterone receptor-positive breast cancers. Itoh M; Iwamoto T; Matsuoka J; Nogami T; Motoki T; Shien T; Taira N; Niikura N; Hayashi N; Ohtani S; Higaki K; Fujiwara T; Doihara H; Symmans WF; Pusztai L Breast Cancer Res Treat; 2014 Jan; 143(2):403-9. PubMed ID: 24337596 [TBL] [Abstract][Full Text] [Related]
9. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Kabos P; Finlay-Schultz J; Li C; Kline E; Finlayson C; Wisell J; Manuel CA; Edgerton SM; Harrell JC; Elias A; Sartorius CA Breast Cancer Res Treat; 2012 Sep; 135(2):415-32. PubMed ID: 22821401 [TBL] [Abstract][Full Text] [Related]
10. Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Horwitz KB; Dye WW; Harrell JC; Kabos P; Sartorius CA Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5774-9. PubMed ID: 18391223 [TBL] [Abstract][Full Text] [Related]
11. ELF5 suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer. Kalyuga M; Gallego-Ortega D; Lee HJ; Roden DL; Cowley MJ; Caldon CE; Stone A; Allerdice SL; Valdes-Mora F; Launchbury R; Statham AL; Armstrong N; Alles MC; Young A; Egger A; Au W; Piggin CL; Evans CJ; Ledger A; Brummer T; Oakes SR; Kaplan W; Gee JM; Nicholson RI; Sutherland RL; Swarbrick A; Naylor MJ; Clark SJ; Carroll JS; Ormandy CJ PLoS Biol; 2012; 10(12):e1001461. PubMed ID: 23300383 [TBL] [Abstract][Full Text] [Related]
12. Progesterone metabolites regulate induction, growth, and suppression of estrogen- and progesterone receptor-negative human breast cell tumors. Wiebe JP; Zhang G; Welch I; Cadieux-Pitre HA Breast Cancer Res; 2013 May; 15(3):R38. PubMed ID: 25927181 [TBL] [Abstract][Full Text] [Related]
13. Cross talk between progesterone receptors and retinoic acid receptors in regulation of cytokeratin 5-positive breast cancer cells. Fettig LM; McGinn O; Finlay-Schultz J; LaBarbera DV; Nordeen SK; Sartorius CA Oncogene; 2017 Nov; 36(44):6074-6084. PubMed ID: 28692043 [TBL] [Abstract][Full Text] [Related]
14. Function of Integrin-Linked Kinase in Modulating the Stemness of IL-6-Abundant Breast Cancer Cells by Regulating γ-Secretase-Mediated Notch1 Activation in Caveolae. Hsu EC; Kulp SK; Huang HL; Tu HJ; Salunke SB; Sullivan NJ; Sun D; Wicha MS; Shapiro CL; Chen CS Neoplasia; 2015 Jun; 17(6):497-508. PubMed ID: 26152358 [TBL] [Abstract][Full Text] [Related]
15. Unliganded progesterone receptors attenuate taxane-induced breast cancer cell death by modulating the spindle assembly checkpoint. Badtke MM; Jambal P; Dye WW; Spillman MA; Post MD; Horwitz KB; Jacobsen BM Breast Cancer Res Treat; 2012 Jan; 131(1):75-87. PubMed ID: 21340479 [TBL] [Abstract][Full Text] [Related]
16. Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a. Finlay-Schultz J; Cittelly DM; Hendricks P; Patel P; Kabos P; Jacobsen BM; Richer JK; Sartorius CA Oncogene; 2015 Jul; 34(28):3676-87. PubMed ID: 25241899 [TBL] [Abstract][Full Text] [Related]
17. Notch Signaling in Breast Cancer: A Role in Drug Resistance. BeLow M; Osipo C Cells; 2020 Sep; 9(10):. PubMed ID: 33003540 [TBL] [Abstract][Full Text] [Related]
18. A novel triazole, NMK-T-057, induces autophagic cell death in breast cancer cells by inhibiting γ-secretase-mediated activation of Notch signaling. Das A; Narayanam MK; Paul S; Mukhnerjee P; Ghosh S; Dastidar DG; Chakrabarty S; Ganguli A; Basu B; Pal M; Chatterji U; Banerjee SK; Karmakar P; Kumar D; Chakrabarti G J Biol Chem; 2019 Apr; 294(17):6733-6750. PubMed ID: 30824542 [TBL] [Abstract][Full Text] [Related]
19. [Roles of immunohistochemistry in prognostic assessment of basal-like breast cancer]. Liu H; Fan QH; Zhang ZH; Li X; Yu HP; Liu GZ; Meng FQ Zhonghua Bing Li Xue Za Zhi; 2009 Jan; 38(1):23-8. PubMed ID: 19489221 [TBL] [Abstract][Full Text] [Related]
20. Breast cancer molecular class ERBB2: preponderance of tumors with apocrine differentiation and expression of basal phenotype markers CK5, CK5/6, and EGFR. Bhargava R; Beriwal S; Striebel JM; Dabbs DJ Appl Immunohistochem Mol Morphol; 2010 Mar; 18(2):113-8. PubMed ID: 19801938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]