These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 21969676)

  • 1. Influence of high-frequency cyclical stimulation on the bone fracture-healing process: mathematical and experimental models.
    Gómez-Benito MJ; González-Torres LA; Reina-Romo E; Grasa J; Seral B; García-Aznar JM
    Philos Trans A Math Phys Eng Sci; 2011 Nov; 369(1954):4278-94. PubMed ID: 21969676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the frequency of the external mechanical stimulus on bone healing: a computational study.
    González-Torres LA; Gómez-Benito MJ; Doblaré M; García-Aznar JM
    Med Eng Phys; 2010 May; 32(4):363-71. PubMed ID: 20202885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of mechanical stability on fracture healing--an update.
    Jagodzinski M; Krettek C
    Injury; 2007 Mar; 38 Suppl 1():S3-10. PubMed ID: 17383483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing.
    Isaksson H; Wilson W; van Donkelaar CC; Huiskes R; Ito K
    J Biomech; 2006; 39(8):1507-16. PubMed ID: 15972212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of osteogenic index, octahedral shear stress and dilatational stress in the ossification of a fracture callus.
    Gardner TN; Mishra S; Marks L
    Med Eng Phys; 2004 Jul; 26(6):493-501. PubMed ID: 15234685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of fracture gap size on the pattern of long bone healing: a computational study.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Theor Biol; 2005 Jul; 235(1):105-19. PubMed ID: 15833317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity.
    Isaksson H; van Donkelaar CC; Huiskes R; Ito K
    J Theor Biol; 2008 May; 252(2):230-46. PubMed ID: 18353374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone regeneration and fracture healing. Experience with distraction osteogenesis model.
    Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat.
    Checa S; Prendergast PJ; Duda GN
    J Biomech; 2011 Apr; 44(7):1237-45. PubMed ID: 21419412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disadvantages of interfragmentary shear on fracture healing--mechanical insights through numerical simulation.
    Steiner M; Claes L; Ignatius A; Simon U; Wehner T
    J Orthop Res; 2014 Jul; 32(7):865-72. PubMed ID: 24648331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity.
    Isaksson H; Comas O; van Donkelaar CC; Mediavilla J; Wilson W; Huiskes R; Ito K
    J Biomech; 2007; 40(9):2002-11. PubMed ID: 17112532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of cyclic compression and distraction on the healing of experimental tibial fractures.
    Hente R; Füchtmeier B; Schlegel U; Ernstberger A; Perren SM
    J Orthop Res; 2004 Jul; 22(4):709-15. PubMed ID: 15183425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical conditions in the initial phase of bone healing.
    Epari DR; Taylor WR; Heller MO; Duda GN
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):646-55. PubMed ID: 16513229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are bone turnover markers capable of predicting callus consolidation during bone healing?
    Klein P; Bail HJ; Schell H; Michel R; Amthauer H; Bragulla H; Duda GN
    Calcif Tissue Int; 2004 Jul; 75(1):40-9. PubMed ID: 15148561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of residual stresses due to bone callus growth: a computational study.
    González-Torres LA; Gómez-Benito MJ; García-Aznar JM
    J Biomech; 2011 Jun; 44(9):1782-7. PubMed ID: 21550610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Bone fracture and the healing mechanisms. The mechanical stress for fracture healing in view of distraction osteogenesis].
    Yukata K; Takahashi M; Yasui N
    Clin Calcium; 2009 May; 19(5):641-6. PubMed ID: 19398830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells.
    Andreykiv A; van Keulen F; Prendergast PJ
    Biomech Model Mechanobiol; 2008 Dec; 7(6):443-61. PubMed ID: 17972123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of strain artefacts arising from a pre-defined callus domain in models of bone healing mechanobiology.
    Wilson CJ; Schuetz MA; Epari DR
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1129-41. PubMed ID: 25687769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the most important cellular characteristics for fracture healing using design of experiments methods.
    Isaksson H; van Donkelaar CC; Huiskes R; Yao J; Ito K
    J Theor Biol; 2008 Nov; 255(1):26-39. PubMed ID: 18723028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth.
    García-Aznar JM; Kuiper JH; Gómez-Benito MJ; Doblaré M; Richardson JB
    J Biomech; 2007; 40(7):1467-76. PubMed ID: 16930609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.