BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21970342)

  • 1. Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model.
    Taghipour Z; Karbalaie K; Kiani A; Niapour A; Bahramian H; Nasr-Esfahani MH; Baharvand H
    Stem Cells Dev; 2012 Jul; 21(10):1794-802. PubMed ID: 21970342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem Cells from Human Exfoliated Deciduous Teeth Modulate Early Astrocyte Response after Spinal Cord Contusion.
    Nicola F; Marques MR; Odorcyk F; Petenuzzo L; Aristimunha D; Vizuete A; Sanches EF; Pereira DP; Maurmann N; Gonçalves CA; Pranke P; Netto CA
    Mol Neurobiol; 2019 Jan; 56(1):748-760. PubMed ID: 29796991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis.
    Nicola FDC; Marques MR; Odorcyk F; Arcego DM; Petenuzzo L; Aristimunha D; Vizuete A; Sanches EF; Pereira DP; Maurmann N; Dalmaz C; Pranke P; Netto CA
    Brain Res; 2017 May; 1663():95-105. PubMed ID: 28322752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotransplantation of human embryonic stem cell-derived neural progenitors and schwann cells in a rat spinal cord contusion injury model elicits a distinct neurogenesis and functional recovery.
    Niapour A; Karamali F; Nemati S; Taghipour Z; Mardani M; Nasr-Esfahani MH; Baharvand H
    Cell Transplant; 2012; 21(5):827-43. PubMed ID: 21944670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protective Mechanism of Stem Cells from Human Exfoliated Deciduous Teeth in Treating Spinal Cord Injury.
    Nishii T; Osuka K; Nishimura Y; Ohmichi Y; Ohmichi M; Suzuki C; Nagashima Y; Oyama T; Abe T; Kato H; Saito R
    J Neurotrauma; 2024 May; 41(9-10):1196-1210. PubMed ID: 38185837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional assessment of the acute local and distal transplantation of human neural stem cells after spinal cord injury.
    Cheng I; Mayle RE; Cox CA; Park DY; Smith RL; Corcoran-Schwartz I; Ponnusamy KE; Oshtory R; Smuck MW; Mitra R; Kharazi AI; Carragee EJ
    Spine J; 2012 Nov; 12(11):1040-4. PubMed ID: 23063425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PSA-NCAM positive neural progenitors stably expressing BDNF promote functional recovery in a mouse model of spinal cord injury.
    Butenschön J; Zimmermann T; Schmarowski N; Nitsch R; Fackelmeier B; Friedemann K; Radyushkin K; Baumgart J; Lutz B; Leschik J
    Stem Cell Res Ther; 2016 Jan; 7():11. PubMed ID: 26762640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury.
    Zweckberger K; Ahuja CS; Liu Y; Wang J; Fehlings MG
    Acta Biomater; 2016 Sep; 42():77-89. PubMed ID: 27296842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord.
    Yasuda A; Tsuji O; Shibata S; Nori S; Takano M; Kobayashi Y; Takahashi Y; Fujiyoshi K; Hara CM; Miyawaki A; Okano HJ; Toyama Y; Nakamura M; Okano H
    Stem Cells; 2011 Dec; 29(12):1983-94. PubMed ID: 22028197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-transplantation of bFGF-expressing amniotic epithelial cells and neural stem cells promotes functional recovery in spinal cord-injured rats.
    Meng XT; Li C; Dong ZY; Liu JM; Li W; Liu Y; Xue H; Chen D
    Cell Biol Int; 2008 Dec; 32(12):1546-58. PubMed ID: 18849003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Do Not Promote Functional Recovery of Pharmacologically Immunosuppressed Mice With Contusion Spinal Cord Injury.
    Pomeshchik Y; Puttonen KA; Kidin I; Ruponen M; Lehtonen S; Malm T; Åkesson E; Hovatta O; Koistinaho J
    Cell Transplant; 2015; 24(9):1799-812. PubMed ID: 25203632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats.
    Zhang N; Lu X; Wu S; Li X; Duan J; Chen C; Wang W; Song H; Tong J; Li S; Liu Y; Kang X; Wang X; Han F
    Cytotherapy; 2018 May; 20(5):670-686. PubMed ID: 29576501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of human neural stem cell transplantation in canine spinal cord hemisection.
    Lee SH; Chung YN; Kim YH; Kim YJ; Park JP; Kwon DK; Kwon OS; Heo JH; Kim YH; Ryu S; Kang HJ; Paek SH; Wang KC; Kim SU; Yoon BW
    Neurol Res; 2009 Nov; 31(9):996-1002. PubMed ID: 19138477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats.
    Ban DX; Ning GZ; Feng SQ; Wang Y; Zhou XH; Liu Y; Chen JT
    Regen Med; 2011 Nov; 6(6):707-20. PubMed ID: 22050523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat.
    Mothe AJ; Bozkurt G; Catapano J; Zabojova J; Wang X; Keating A; Tator CH
    Spinal Cord; 2011 Sep; 49(9):967-73. PubMed ID: 21606931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of porcine embryonic stem cells and their derived neuronal progenitors in a spinal cord injury rat model.
    Yang JR; Liao CH; Pang CY; Huang LL; Chen YL; Shiue YL; Chen LR
    Cytotherapy; 2013 Feb; 15(2):201-8. PubMed ID: 23245953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beneficial Effect of Human Induced Pluripotent Stem Cell-Derived Neural Precursors in Spinal Cord Injury Repair.
    Romanyuk N; Amemori T; Turnovcova K; Prochazka P; Onteniente B; Sykova E; Jendelova P
    Cell Transplant; 2015; 24(9):1781-97. PubMed ID: 25259685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell-derived Schwann cells after contusion injury to the adult rat spinal cord.
    Someya Y; Koda M; Dezawa M; Kadota T; Hashimoto M; Kamada T; Nishio Y; Kadota R; Mannoji C; Miyashita T; Okawa A; Yoshinaga K; Yamazaki M
    J Neurosurg Spine; 2008 Dec; 9(6):600-10. PubMed ID: 19035756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.