These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 21970619)

  • 21. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.
    Herrmann T; Güntert P; Wüthrich K
    J Mol Biol; 2002 May; 319(1):209-27. PubMed ID: 12051947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. REDCRAFT: A computational platform using residual dipolar coupling NMR data for determining structures of perdeuterated proteins in solution.
    Cole CA; Daigham NS; Liu G; Montelione GT; Valafar H
    PLoS Comput Biol; 2021 Feb; 17(2):e1008060. PubMed ID: 33524015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments.
    Langmead CJ; Yan A; Lilien R; Wang L; Donald BR
    J Comput Biol; 2004; 11(2-3):277-98. PubMed ID: 15285893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complete protein structure determination using backbone residual dipolar couplings and sidechain rotamer prediction.
    Andrec M; Harano Y; Jacobson MP; Friesner RA; Levy RM
    J Struct Funct Genomics; 2002; 2(2):103-11. PubMed ID: 12836667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data.
    Wang L; Mettu RR; Donald BR
    J Comput Biol; 2006 Sep; 13(7):1267-88. PubMed ID: 17037958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of a systematic search-based algorithm for determining protein backbone structure from a minimum number of residual dipolar couplings.
    Wang L; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():319-30. PubMed ID: 16448025
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints.
    Giesen AW; Homans SW; Brown JM
    J Biomol NMR; 2003 Jan; 25(1):63-71. PubMed ID: 12567000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assignment strategy for proteins with known structure.
    Hus JC; Prompers JJ; Brüschweiler R
    J Magn Reson; 2002 Jul; 157(1):119-23. PubMed ID: 12202140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic NOESY assignment in CS-RASREC-Rosetta.
    Lange OF
    J Biomol NMR; 2014 Jul; 59(3):147-59. PubMed ID: 24831340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bayesian statistical analysis of protein side-chain rotamer preferences.
    Dunbrack RL; Cohen FE
    Protein Sci; 1997 Aug; 6(8):1661-81. PubMed ID: 9260279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of a high precision structure of a novel protein, Linum usitatissimum trypsin inhibitor (LUTI), using computer-aided assignment of NOESY cross-peaks.
    Cierpicki T; Otlewski J
    J Mol Biol; 2000 Oct; 302(5):1179-92. PubMed ID: 11183783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dead-end elimination with backbone flexibility.
    Georgiev I; Donald BR
    Bioinformatics; 2007 Jul; 23(13):i185-94. PubMed ID: 17646295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exact solutions for internuclear vectors and backbone dihedral angles from NH residual dipolar couplings in two media, and their application in a systematic search algorithm for determining protein backbone structure.
    Wang L; Donald BR
    J Biomol NMR; 2004 Jul; 29(3):223-42. PubMed ID: 15213422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Backbone resonance assignment and order tensor estimation using residual dipolar couplings.
    Shealy P; Liu Y; Simin M; Valafar H
    J Biomol NMR; 2011 Aug; 50(4):357-69. PubMed ID: 21667298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
    van Dijk AD; Fushman D; Bonvin AM
    Proteins; 2005 Aug; 60(3):367-81. PubMed ID: 15937902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated protein fold determination using a minimal NMR constraint strategy.
    Zheng D; Huang YJ; Moseley HN; Xiao R; Aramini J; Swapna GV; Montelione GT
    Protein Sci; 2003 Jun; 12(6):1232-46. PubMed ID: 12761394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The NOESY jigsaw: automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data.
    Bailey-Kellogg C; Widge A; Kelley JJ; Berardi MJ; Bushweller JH; Donald BR
    J Comput Biol; 2000; 7(3-4):537-58. PubMed ID: 11108478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing.
    Bishop AC; Torres-Montalvo G; Kotaru S; Mimun K; Wand AJ
    Nat Commun; 2023 Mar; 14(1):1556. PubMed ID: 36944645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of molecular alignment tensors without backbone resonance assignment: Aid to rapid analysis of protein-protein interactions.
    Zweckstetter M
    J Biomol NMR; 2003 Sep; 27(1):41-56. PubMed ID: 12878840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic
    Chen X; Smelter A; Moseley HNB
    J Biomol NMR; 2018 Oct; 72(1-2):11-28. PubMed ID: 30097912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.