These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots. Aubry-Hivet D; Nziengui H; Rapp K; Oliveira O; Paponov IA; Li Y; Hauslage J; Vagt N; Braun M; Ditengou FA; Dovzhenko A; Palme K Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():129-41. PubMed ID: 24373012 [TBL] [Abstract][Full Text] [Related]
3. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Zupanska AK; Denison FC; Ferl RJ; Paul AL Am J Bot; 2013 Jan; 100(1):235-48. PubMed ID: 23258370 [TBL] [Abstract][Full Text] [Related]
4. Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. Paul AL; Zupanska AK; Schultz ER; Ferl RJ BMC Plant Biol; 2013 Aug; 13():112. PubMed ID: 23919896 [TBL] [Abstract][Full Text] [Related]
5. Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data. Hausmann N; Fengler S; Hennig A; Franz-Wachtel M; Hampp R; Neef M Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():120-8. PubMed ID: 23870071 [TBL] [Abstract][Full Text] [Related]
6. Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Brenner WG; Romanov GA; Köllmer I; Bürkle L; Schmülling T Plant J; 2005 Oct; 44(2):314-33. PubMed ID: 16212609 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional responses to cantharidin, a protein phosphatase inhibitor, in Arabidopsis thaliana reveal the involvement of multiple signal transduction pathways. Bajsa J; Pan Z; Duke SO Physiol Plant; 2011 Oct; 143(2):188-205. PubMed ID: 21668865 [TBL] [Abstract][Full Text] [Related]
8. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Zeller G; Henz SR; Widmer CK; Sachsenberg T; Rätsch G; Weigel D; Laubinger S Plant J; 2009 Jun; 58(6):1068-82. PubMed ID: 19222804 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development. Kwon T; Sparks JA; Nakashima J; Allen SN; Tang Y; Blancaflor EB Am J Bot; 2015 Jan; 102(1):21-35. PubMed ID: 25587145 [TBL] [Abstract][Full Text] [Related]
10. Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. Kant P; Gordon M; Kant S; Zolla G; Davydov O; Heimer YM; Chalifa-Caspi V; Shaked R; Barak S Plant Cell Environ; 2008 Jun; 31(6):697-714. PubMed ID: 18182014 [TBL] [Abstract][Full Text] [Related]
12. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Cadman CS; Toorop PE; Hilhorst HW; Finch-Savage WE Plant J; 2006 Jun; 46(5):805-22. PubMed ID: 16709196 [TBL] [Abstract][Full Text] [Related]
13. [Expression of PIN and AUX1 genes encoding carrier proteins for auxin polar transport in higher plants under simulated microgravity conditions on a three-dimensional clinostat]. Hitotsubashi R; Miyamoto K; Ueda J Biol Sci Space; 2002 Nov; 16(3):183-4. PubMed ID: 12695613 [No Abstract] [Full Text] [Related]
14. Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Van Hoewyk D; Takahashi H; Inoue E; Hess A; Tamaoki M; Pilon-Smits EA Physiol Plant; 2008 Feb; 132(2):236-53. PubMed ID: 18251864 [TBL] [Abstract][Full Text] [Related]
15. Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Kawamura Y; Takenaka S; Hase S; Kubota M; Ichinose Y; Kanayama Y; Nakaho K; Klessig DF; Takahashi H Plant Cell Physiol; 2009 May; 50(5):924-34. PubMed ID: 19304739 [TBL] [Abstract][Full Text] [Related]
16. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. Bray EA J Exp Bot; 2004 Nov; 55(407):2331-41. PubMed ID: 15448178 [TBL] [Abstract][Full Text] [Related]
17. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Magnan F; Ranty B; Charpenteau M; Sotta B; Galaud JP; Aldon D Plant J; 2008 Nov; 56(4):575-89. PubMed ID: 18643966 [TBL] [Abstract][Full Text] [Related]
18. Two-component systems in Arabidopsis thaliana--A structural view. Romir J; Harter K; Stehle T Eur J Cell Biol; 2010; 89(2-3):270-2. PubMed ID: 19944478 [TBL] [Abstract][Full Text] [Related]
19. Changes in gene expression and signal transduction in microgravity. Hughes-Fulford M J Gravit Physiol; 2001 Jul; 8(1):P1-4. PubMed ID: 12638602 [TBL] [Abstract][Full Text] [Related]
20. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Ellis CM; Nagpal P; Young JC; Hagen G; Guilfoyle TJ; Reed JW Development; 2005 Oct; 132(20):4563-74. PubMed ID: 16176952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]