These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 21970978)
1. A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting. Ishihara H; Kannarpady GK; Khedir KR; Woo J; Trigwell S; Biris AS Phys Chem Chem Phys; 2011 Nov; 13(43):19553-60. PubMed ID: 21970978 [TBL] [Abstract][Full Text] [Related]
2. Photoanodes based on nanostructured WO3 for water splitting. Tacca A; Meda L; Marra G; Savoini A; Caramori S; Cristino V; Bignozzi CA; Gonzalez Pedro V; Boix PP; Gimenez S; Bisquert J Chemphyschem; 2012 Aug; 13(12):3025-34. PubMed ID: 22532437 [TBL] [Abstract][Full Text] [Related]
3. A novel photoelectrochemical sensor based on PPIX-functionalized WO3-rGO nanohybrid-decorated ITO electrode for detecting cysteine. Sun B; Zhang K; Chen L; Guo L; Ai S Biosens Bioelectron; 2013 Jun; 44():48-51. PubMed ID: 23391706 [TBL] [Abstract][Full Text] [Related]
4. Photocatalysis and photoelectrochemical properties of tungsten trioxide nanostructured films. Lai CW ScientificWorldJournal; 2014; 2014():843587. PubMed ID: 24782669 [TBL] [Abstract][Full Text] [Related]
5. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. de Tacconi NR; Chenthamarakshan CR; Yogeeswaran G; Watcharenwong A; de Zoysa RS; Basit NA; Rajeshwar K J Phys Chem B; 2006 Dec; 110(50):25347-55. PubMed ID: 17165981 [TBL] [Abstract][Full Text] [Related]
6. WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment. Reyes-Gil KR; Robinson DB ACS Appl Mater Interfaces; 2013 Dec; 5(23):12400-10. PubMed ID: 24195676 [TBL] [Abstract][Full Text] [Related]
7. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214 [TBL] [Abstract][Full Text] [Related]
8. Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. Vemuri RS; Engelhard MH; Ramana CV ACS Appl Mater Interfaces; 2012 Mar; 4(3):1371-7. PubMed ID: 22332637 [TBL] [Abstract][Full Text] [Related]
9. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Shi X; Choi IY; Zhang K; Kwon J; Kim DY; Lee JK; Oh SH; Kim JK; Park JH Nat Commun; 2014 Sep; 5():4775. PubMed ID: 25179126 [TBL] [Abstract][Full Text] [Related]
10. Nitrogen doping of nanoporous WO3 layers by NH3 treatment for increased visible light photoresponse. Nah YC; Paramasivam I; Hahn R; Shrestha NK; Schmuki P Nanotechnology; 2010 Mar; 21(10):105704. PubMed ID: 20154369 [TBL] [Abstract][Full Text] [Related]
11. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. Chen X; Ye J; Ouyang S; Kako T; Li Z; Zou Z ACS Nano; 2011 Jun; 5(6):4310-8. PubMed ID: 21604767 [TBL] [Abstract][Full Text] [Related]
12. Ta2O5-Incorporated WO3 nanocomposite film for improved electrochromic performance in an acidic condition. Shim HS; Ahn HJ; Kim YS; Sung YE; Kim WB J Nanosci Nanotechnol; 2006 Nov; 6(11):3572-6. PubMed ID: 17252814 [TBL] [Abstract][Full Text] [Related]
13. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles. Miyauchi M Phys Chem Chem Phys; 2008 Nov; 10(41):6258-65. PubMed ID: 18936850 [TBL] [Abstract][Full Text] [Related]
14. Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers. Zhang K; Shi XJ; Kim JK; Park JH Phys Chem Chem Phys; 2012 Aug; 14(31):11119-24. PubMed ID: 22772604 [TBL] [Abstract][Full Text] [Related]
15. Improved Charge Separation in WO₃/CuWO₄ Composite Photoanodes for Photoelectrochemical Water Oxidation. Wang D; Bassi PS; Qi H; Zhao X; ; Wong LH; Xu R; Sritharan T; Chen Z Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773473 [TBL] [Abstract][Full Text] [Related]
18. Highly Efficient Photoelectrochemical Hydrogen Generation Using Zn(x)Bi2S(3+x) Sensitized Platelike WO₃ Photoelectrodes. Liu C; Yang Y; Li W; Li J; Li Y; Shi Q; Chen Q ACS Appl Mater Interfaces; 2015 May; 7(20):10763-70. PubMed ID: 25942616 [TBL] [Abstract][Full Text] [Related]
19. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S Nanoscale; 2015 Feb; 7(7):2933-40. PubMed ID: 25587830 [TBL] [Abstract][Full Text] [Related]