These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 21971019)
1. The diffusion of hydrogen monomers on hole-doped graphitic lattices: over-barrier transition and quantum tunneling. Huang LF; Ni MY; Zeng Z J Phys Condens Matter; 2011 Nov; 23(43):435007. PubMed ID: 21971019 [TBL] [Abstract][Full Text] [Related]
2. Interaction energy of a water molecule with a single-layer graphitic surface modeled by hydrogen- and fluorine-terminated clusters. Sudiarta IW; Geldart DJ J Phys Chem A; 2006 Sep; 110(35):10501-6. PubMed ID: 16942056 [TBL] [Abstract][Full Text] [Related]
3. Modulation of the thermodynamic, kinetic, and magnetic properties of the hydrogen monomer on graphene by charge doping. Huang LF; Ni MY; Zhang GR; Zhou WH; Li YG; Zheng XH; Zeng Z J Chem Phys; 2011 Aug; 135(6):064705. PubMed ID: 21842947 [TBL] [Abstract][Full Text] [Related]
4. Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model. Kong XK; Chen QW Phys Chem Chem Phys; 2013 Aug; 15(31):12982-7. PubMed ID: 23817454 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the adsorption free energy of light guest molecules in nanoporous host structures. Patchkovskii S; Heine T Phys Chem Chem Phys; 2007 Jun; 9(21):2697-705. PubMed ID: 17627313 [TBL] [Abstract][Full Text] [Related]
6. O2 and H2O2 transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations. Li Y; Zhong G; Yu H; Wang H; Peng F Phys Chem Chem Phys; 2015 Sep; 17(34):21950-9. PubMed ID: 26234475 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces. Pozzo M; Alfè D; Amieiro A; French S; Pratt A J Chem Phys; 2008 Mar; 128(9):094703. PubMed ID: 18331106 [TBL] [Abstract][Full Text] [Related]
8. Electronic properties of a graphene antidot in magnetic fields. Park PS; Kim SC; Yang SR J Phys Condens Matter; 2010 Sep; 22(37):375302. PubMed ID: 21403191 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations. Du A; Zhu Z; Smith SC J Am Chem Soc; 2010 Mar; 132(9):2876-7. PubMed ID: 20155897 [TBL] [Abstract][Full Text] [Related]
10. A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding. Berland K; Chakarova-Käck SD; Cooper VR; Langreth DC; Schröder E J Phys Condens Matter; 2011 Apr; 23(13):135001. PubMed ID: 21403239 [TBL] [Abstract][Full Text] [Related]
11. A theoretical study of a ZnO graphene analogue: adsorption on Ag(111) and hydrogen transport. Demiroglu I; Stradi D; Illas F; Bromley ST J Phys Condens Matter; 2011 Aug; 23(33):334215. PubMed ID: 21813949 [TBL] [Abstract][Full Text] [Related]
12. Adsorption, diffusion, and recombination of hydrogen on pure and boron-doped graphite surfaces. Ferro Y; Marinelli F; Jelea A; Allouche A J Chem Phys; 2004 Jun; 120(24):11882-8. PubMed ID: 15268222 [TBL] [Abstract][Full Text] [Related]
13. Chair and twist-boat membranes in hydrogenated graphene. Samarakoon DK; Wang XQ ACS Nano; 2009 Dec; 3(12):4017-22. PubMed ID: 19947580 [TBL] [Abstract][Full Text] [Related]
14. (HCl)2 and (HF)2 in small helium clusters: quantum solvation of hydrogen-bonded dimers. Jiang H; Sarsa A; Murdachaew G; Szalewicz K; Bacić Z J Chem Phys; 2005 Dec; 123(22):224313. PubMed ID: 16375482 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen spillover mechanism on a Pd-doped Mg surface as revealed by ab initio density functional calculation. Du AJ; Smith SC; Yao XD; Lu GQ J Am Chem Soc; 2007 Aug; 129(33):10201-4. PubMed ID: 17663553 [TBL] [Abstract][Full Text] [Related]
16. Quantum tunneling enabled self-assembly of hydrogen atoms on Cu(111). Jewell AD; Peng G; Mattera MF; Lewis EA; Murphy CJ; Kyriakou G; Mavrikakis M; Sykes EC ACS Nano; 2012 Nov; 6(11):10115-21. PubMed ID: 23030641 [TBL] [Abstract][Full Text] [Related]
17. Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions. Pang J; Pu J; Gao J; Truhlar DG; Allemann RK J Am Chem Soc; 2006 Jun; 128(24):8015-23. PubMed ID: 16771517 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores. Huang PH Phys Chem Chem Phys; 2015 Sep; 17(35):22686-98. PubMed ID: 26256825 [TBL] [Abstract][Full Text] [Related]
19. Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite. Pascal TA; Karasawa N; Goddard WA J Chem Phys; 2010 Oct; 133(13):134114. PubMed ID: 20942530 [TBL] [Abstract][Full Text] [Related]
20. Density functional investigation of hydrogen gas adsorption on Fe-doped pristine and Stone-Wales defected single-walled carbon nanotubes. Tabtimsai C; Keawwangchai S; Nunthaboot N; Ruangpornvisuti V; Wanno B J Mol Model; 2012 Aug; 18(8):3941-9. PubMed ID: 22431225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]