These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 21971125)
1. Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach: an in vitro study. Laws CJ; Coughlin DG; Lotz JC; Serhan HA; Hu SS Spine (Phila Pa 1976); 2012 May; 37(10):819-25. PubMed ID: 21971125 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Gerber M; Crawford NR; Chamberlain RH; Fifield MS; LeHuec JC; Dickman CA Spine (Phila Pa 1976); 2006 Apr; 31(7):762-8. PubMed ID: 16582849 [TBL] [Abstract][Full Text] [Related]
4. In vitro study of biomechanical behavior of anterior and transforaminal lumbar interbody instrumentation techniques. Niemeyer TK; Koriller M; Claes L; Kettler A; Werner K; Wilke HJ Neurosurgery; 2006 Dec; 59(6):1271-6; discussion 1276-7. PubMed ID: 17277690 [TBL] [Abstract][Full Text] [Related]
5. Enhancing the stability of anterior lumbar interbody fusion: a biomechanical comparison of anterior plate versus posterior transpedicular instrumentation. Tzermiadianos MN; Mekhail A; Voronov LI; Zook J; Havey RM; Renner SM; Carandang G; Abjornson C; Patwardhan AG Spine (Phila Pa 1976); 2008 Jan; 33(2):E38-43. PubMed ID: 18197089 [TBL] [Abstract][Full Text] [Related]
6. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547 [TBL] [Abstract][Full Text] [Related]
8. Augmentation of anterior lumbar interbody fusion with anterior pedicle screw fixation: demonstration of novel constructs and evaluation of biomechanical stability in cadaveric specimens. Karim A; Mukherjee D; Ankem M; Gonzalez-Cruz J; Smith D; Nanda A Neurosurgery; 2006 Mar; 58(3):522-7; discussion 522-7. PubMed ID: 16528193 [TBL] [Abstract][Full Text] [Related]
9. [Biomechanical stability of unilateral pedicle screw fixation on cadaveric model simulated two-level posterior lumbar interbody fusion]. Dong JW; Feng F; Zhao WD; Rong LM; Liu XM Zhonghua Wai Ke Za Zhi; 2011 May; 49(5):436-9. PubMed ID: 21733402 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion. Bhatia NN; Lee KH; Bui CN; Luna M; Wahba GM; Lee TQ Spine (Phila Pa 1976); 2012 Jan; 37(2):E79-85. PubMed ID: 21629171 [TBL] [Abstract][Full Text] [Related]
12. Lumbar lateral interbody cage with plate augmentation: in vitro biomechanical analysis. Le Huec JC; Liu M; Skalli W; Josse L Eur Spine J; 2002 Apr; 11(2):130-6. PubMed ID: 11956919 [TBL] [Abstract][Full Text] [Related]
13. Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages. Nayak AN; Gutierrez S; Billys JB; Santoni BG; Castellvi AE Spine J; 2013 Oct; 13(10):1331-8. PubMed ID: 23685215 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical comparison of an interspinous fusion device and bilateral pedicle screw system as additional fixation for lateral lumbar interbody fusion. Doulgeris JJ; Aghayev K; Gonzalez-Blohm SA; Lee WE; Vrionis FD Clin Biomech (Bristol); 2015 Feb; 30(2):205-10. PubMed ID: 25577548 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Volkov A; Vrionis FD J Neurosurg Spine; 2014 Feb; 20(2):209-19. PubMed ID: 24286528 [TBL] [Abstract][Full Text] [Related]
16. MIS Expandable Interbody Spacers: A Literature Review and Biomechanical Comparison of an Expandable MIS TLIF With Conventional TLIF and ALIF. Cannestra AF; Peterson MD; Parker SR; Roush TF; Bundy JV; Turner AW Spine (Phila Pa 1976); 2016 Apr; 41 Suppl 8():S44-9. PubMed ID: 26825792 [TBL] [Abstract][Full Text] [Related]
17. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study. Techy F; Mageswaran P; Colbrunn RW; Bonner TF; McLain RF Spine J; 2013 May; 13(5):572-9. PubMed ID: 23498926 [TBL] [Abstract][Full Text] [Related]
18. Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support. Perez-Orribo L; Kalb S; Reyes PM; Chang SW; Crawford NR Spine (Phila Pa 1976); 2013 Apr; 38(8):635-41. PubMed ID: 23104197 [TBL] [Abstract][Full Text] [Related]
19. A new stand-alone cervical anterior interbody fusion device: biomechanical comparison with established anterior cervical fixation devices. Scholz M; Reyes PM; Schleicher P; Sawa AG; Baek S; Kandziora F; Marciano FF; Crawford NR Spine (Phila Pa 1976); 2009 Jan; 34(2):156-60. PubMed ID: 19139665 [TBL] [Abstract][Full Text] [Related]
20. Finite element analysis of anterior lumbar interbody fusion: threaded cylindrical cage and pedicle screw fixation. Kim Y Spine (Phila Pa 1976); 2007 Nov; 32(23):2558-68. PubMed ID: 17978654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]