These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21971310)

  • 41. A genetic strategy for differential screening of meiotic germ-cell cDNA libraries.
    Caldwell KA; Wiltshire T; Handel MA
    Mol Reprod Dev; 1996 Apr; 43(4):403-13. PubMed ID: 9052930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Epigenetics of the sperm cell].
    Rousseaux S; Faure AK; Thévenon J; Escoffier E; Lestrat C; Govin J; Hennebicq S; Sèle B; Caron C; Khochbin S
    Gynecol Obstet Fertil; 2006 Sep; 34(9):831-5. PubMed ID: 16949851
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Male mice lacking three germ cell expressed genes are fertile.
    Nayernia K; Drabent B; Adham IM; Möschner M; Wolf S; Meinhardt A; Engel W
    Biol Reprod; 2003 Dec; 69(6):1973-8. PubMed ID: 12930723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Post-meiotic gene products as targets for male contraception.
    Ivell R; Danner S; Fritsch M
    Mol Cell Endocrinol; 2004 Mar; 216(1-2):65-74. PubMed ID: 15109746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PKA, germ cells, and fertility.
    Burton KA; McKnight GS
    Physiology (Bethesda); 2007 Feb; 22():40-6. PubMed ID: 17289929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The whole meiotic process can occur in vitro in untransformed rat spermatogenic cells.
    Staub C; Hue D; Nicolle JC; Perrard-Sapori MH; Segretain D; Durand P
    Exp Cell Res; 2000 Oct; 260(1):85-95. PubMed ID: 11010813
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development.
    Zhao M; Shirley CR; Hayashi S; Marcon L; Mohapatra B; Suganuma R; Behringer RR; Boissonneault G; Yanagimachi R; Meistrich ML
    Genesis; 2004 Apr; 38(4):200-13. PubMed ID: 15083521
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro spermatogenesis as a method to bypass pre-meiotic or post-meiotic barriers blocking the spermatogenetic process: genetic and epigenetic implications in assisted reproductive technology.
    Georgiou I; Pardalidis N; Giannakis D; Saito M; Watanabe T; Tsounapi P; Loutradis D; Kanakas N; Karagiannis A; Baltogiannis D; Giotitsas N; Miyagawa I; Sofikitis N
    Andrologia; 2007 Oct; 39(5):159-76. PubMed ID: 17714214
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Haploid gene expresion versus meiotic drive: the relevance of intercellular bridges during spermatogenesis.
    Erickson RP
    Nat New Biol; 1973 Jun; 243(128):210-2. PubMed ID: 4514960
    [No Abstract]   [Full Text] [Related]  

  • 50. Proteomics of reproduction: Prospects and perspectives.
    Panner Selvam MK; Baskaran S; Agarwal A
    Adv Clin Chem; 2019; 92():217-243. PubMed ID: 31472755
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular dynamics study reveals key disruptors of MEIG1-PACRG interaction.
    Hasse T; Zhang Z; Huang YM
    Proteins; 2023 Apr; 91(4):555-566. PubMed ID: 36444670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteomic analysis reveals dysregulated cell signaling in ejaculated spermatozoa from infertile men.
    Samanta L; Sharma R; Cui Z; Agarwal A
    Asian J Androl; 2019; 21(2):121-130. PubMed ID: 30381577
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proteomic analysis of mature and immature ejaculated spermatozoa from fertile men.
    Cui Z; Sharma R; Agarwal A
    Asian J Androl; 2016; 18(5):735-46. PubMed ID: 26510506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sperm and spermatids contain different proteins and bind distinct egg factors.
    Teperek M; Miyamoto K; Simeone A; Feret R; Deery MJ; Gurdon JB; Jullien J
    Int J Mol Sci; 2014 Sep; 15(9):16719-40. PubMed ID: 25244019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Epigenetic inheritance: histone bookmarks across generations.
    Campos EI; Stafford JM; Reinberg D
    Trends Cell Biol; 2014 Nov; 24(11):664-74. PubMed ID: 25242115
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proteomic strategy for the identification of critical actors in reorganization of the post-meiotic male genome.
    Govin J; Gaucher J; Ferro M; Debernardi A; Garin J; Khochbin S; Rousseaux S
    Mol Hum Reprod; 2012 Jan; 18(1):1-13. PubMed ID: 21971310
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular models for post-meiotic male genome reprogramming.
    Rousseaux S; Boussouar F; Gaucher J; Reynoird N; Montellier E; Curtet S; Vitte AL; Khochbin S
    Syst Biol Reprod Med; 2011 Feb; 57(1-2):50-3. PubMed ID: 21208144
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Spermiogenesis: histone acetylation triggers male genome reprogramming].
    Rousseaux S; Gaucher J; Thevenon J; Caron C; Vitte AL; Curtet S; Derobertis C; Faure AK; Levy R; Aknin-Seifer I; Ravel C; Siffroi JP; Mc Elreavey K; Lejeune H; Jimenez C; Hennebicq S; Khochbin S
    Gynecol Obstet Fertil; 2009 Jun; 37(6):519-22. PubMed ID: 19447664
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combined proteomic and in silico approaches to decipher post-meiotic male genome reprogramming in mice.
    Rousseaux S; Khochbin S
    Syst Biol Reprod Med; 2012 Aug; 58(4):191-6. PubMed ID: 22788531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Cross-fire over the nucleosome: molecular basis of post-meiotic male haploid genome compaction].
    Montellier E; Rousseaux S; Khochbin S
    Med Sci (Paris); 2012 May; 28(5):485-9. PubMed ID: 22643001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.