These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 21971417)
1. Biological performance of hydroxyapatite-biopolymer foams: in vitro cell response. Cicuéndez M; Izquierdo-Barba I; Sánchez-Salcedo S; Vila M; Vallet-Regí M Acta Biomater; 2012 Feb; 8(2):802-10. PubMed ID: 21971417 [TBL] [Abstract][Full Text] [Related]
2. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
3. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. He P; Sahoo S; Ng KS; Chen K; Toh SL; Goh JC J Biomed Mater Res A; 2013 Feb; 101(2):555-66. PubMed ID: 22949167 [TBL] [Abstract][Full Text] [Related]
4. Primary human osteoblast culture on 3D porous collagen-hydroxyapatite scaffolds. Jones GL; Walton R; Czernuszka J; Griffiths SL; El Haj AJ; Cartmell SH J Biomed Mater Res A; 2010 Sep; 94(4):1244-50. PubMed ID: 20694991 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of a multilayered chitosan-hydroxy-apatite porous composite enriched with fibronectin or an in vitro-generated bone-like extracellular matrix on proliferation and diferentiation of osteoblasts. Fernández MS; Arias JI; Martínez MJ; Saenz L; Neira-Carrillo A; Yazdani-Pedram M; Arias JL J Tissue Eng Regen Med; 2012 Jun; 6(6):497-504. PubMed ID: 21812117 [TBL] [Abstract][Full Text] [Related]
6. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects. Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612 [TBL] [Abstract][Full Text] [Related]
7. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite. Jaiswal AK; Chhabra H; Soni VP; Bellare JR Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2376-85. PubMed ID: 23498272 [TBL] [Abstract][Full Text] [Related]
8. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
9. In vitro response of hFOB cells to pamidronate modified sodium silicate coated cellulose scaffolds. Ponader S; Brandt H; Vairaktaris E; von Wilmowsky C; Nkenke E; Schlegel KA; Neukam FW; Holst S; Müller FA; Greil P Colloids Surf B Biointerfaces; 2008 Jul; 64(2):275-83. PubMed ID: 18346882 [TBL] [Abstract][Full Text] [Related]
10. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Kim HW; Knowles JC; Kim HE J Biomed Mater Res A; 2005 Feb; 72(2):136-45. PubMed ID: 15549783 [TBL] [Abstract][Full Text] [Related]
11. Nonwoven silk fibroin net/nano-hydroxyapatite scaffold: preparation and characterization. Zhao Y; Chen J; Chou AH; Li G; LeGeros RZ J Biomed Mater Res A; 2009 Dec; 91(4):1140-9. PubMed ID: 19148924 [TBL] [Abstract][Full Text] [Related]
12. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575 [TBL] [Abstract][Full Text] [Related]
13. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
14. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Aina V; Bergandi L; Lusvardi G; Malavasi G; Imrie FE; Gibson IR; Cerrato G; Ghigo D Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1132-42. PubMed ID: 23827552 [TBL] [Abstract][Full Text] [Related]
15. Enzymatically crosslinked porous composite matrices for bone tissue regeneration. Ciardelli G; Gentile P; Chiono V; Mattioli-Belmonte M; Vozzi G; Barbani N; Giusti P J Biomed Mater Res A; 2010 Jan; 92(1):137-51. PubMed ID: 19165785 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the osteoblastic activity conferred on Si-doped hydroxyapatite scaffolds by different osteostatin coatings. Manzano M; Lozano D; Arcos D; Portal-Núñez S; Orden CL; Esbrit P; Vallet-Regí M Acta Biomater; 2011 Oct; 7(10):3555-62. PubMed ID: 21693201 [TBL] [Abstract][Full Text] [Related]
17. 3D interconnected porous biomimetic scaffolds: In vitro cell response. Panzavolta S; Torricelli P; Amadori S; Parrilli A; Rubini K; della Bella E; Fini M; Bigi A J Biomed Mater Res A; 2013 Dec; 101(12):3560-70. PubMed ID: 23629945 [TBL] [Abstract][Full Text] [Related]
18. Osteoblast response to continuous phase macroporous scaffolds under static and dynamic culture conditions. Meretoja VV; Malin M; Seppälä JV; Närhi TO J Biomed Mater Res A; 2009 May; 89(2):317-25. PubMed ID: 18431787 [TBL] [Abstract][Full Text] [Related]
19. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW; Kim HE; Salih V Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549 [TBL] [Abstract][Full Text] [Related]