These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 21971552)
1. Simulated microgravity using a rotary cell culture system promotes chondrogenesis of human adipose-derived mesenchymal stem cells via the p38 MAPK pathway. Yu B; Yu D; Cao L; Zhao X; Long T; Liu G; Tang T; Zhu Z Biochem Biophys Res Commun; 2011 Oct; 414(2):412-8. PubMed ID: 21971552 [TBL] [Abstract][Full Text] [Related]
2. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Huang CY; Hagar KL; Frost LE; Sun Y; Cheung HS Stem Cells; 2004; 22(3):313-23. PubMed ID: 15153608 [TBL] [Abstract][Full Text] [Related]
3. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. Longobardi L; O'Rear L; Aakula S; Johnstone B; Shimer K; Chytil A; Horton WA; Moses HL; Spagnoli A J Bone Miner Res; 2006 Apr; 21(4):626-36. PubMed ID: 16598383 [TBL] [Abstract][Full Text] [Related]
4. A comparison of the involvement of p38, ERK1/2 and PI3K in growth factor-induced chondrogenic differentiation of mesenchymal stem cells. McMahon LA; Prendergast PJ; Campbell VA Biochem Biophys Res Commun; 2008 Apr; 368(4):990-5. PubMed ID: 18267113 [TBL] [Abstract][Full Text] [Related]
5. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881 [TBL] [Abstract][Full Text] [Related]
6. PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Kim YJ; Kim HJ; Im GI Biochem Biophys Res Commun; 2008 Aug; 373(1):104-8. PubMed ID: 18554504 [TBL] [Abstract][Full Text] [Related]
7. Chondrogenesis of human mesenchymal stem cells by local transforming growth factor-beta delivery in a biphasic resorbable carrier. Dickhut A; Dexheimer V; Martin K; Lauinger R; Heisel C; Richter W Tissue Eng Part A; 2010 Feb; 16(2):453-64. PubMed ID: 19705961 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. Kisiday JD; Kopesky PW; Evans CH; Grodzinsky AJ; McIlwraith CW; Frisbie DD J Orthop Res; 2008 Mar; 26(3):322-31. PubMed ID: 17960654 [TBL] [Abstract][Full Text] [Related]
9. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Ronzière MC; Perrier E; Mallein-Gerin F; Freyria AM Biomed Mater Eng; 2010; 20(3):145-58. PubMed ID: 20930322 [TBL] [Abstract][Full Text] [Related]
10. Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Huang CY; Reuben PM; D'Ippolito G; Schiller PC; Cheung HS Anat Rec A Discov Mol Cell Evol Biol; 2004 May; 278(1):428-36. PubMed ID: 15103737 [TBL] [Abstract][Full Text] [Related]
11. Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: greater doses of growth factor are necessary. Kim HJ; Im GI J Orthop Res; 2009 May; 27(5):612-9. PubMed ID: 18985688 [TBL] [Abstract][Full Text] [Related]
12. Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. Park H; Temenoff JS; Tabata Y; Caplan AI; Raphael RM; Jansen JA; Mikos AG J Biomed Mater Res A; 2009 Mar; 88(4):889-97. PubMed ID: 18381637 [TBL] [Abstract][Full Text] [Related]
13. Coculture of synovium-derived stem cells and nucleus pulposus cells in serum-free defined medium with supplementation of transforming growth factor-beta1: a potential application of tissue-specific stem cells in disc regeneration. Chen S; Emery SE; Pei M Spine (Phila Pa 1976); 2009 May; 34(12):1272-80. PubMed ID: 19455002 [TBL] [Abstract][Full Text] [Related]
14. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Bosnakovski D; Mizuno M; Kim G; Ishiguro T; Okumura M; Iwanaga T; Kadosawa T; Fujinaga T Exp Hematol; 2004 May; 32(5):502-9. PubMed ID: 15145219 [TBL] [Abstract][Full Text] [Related]
15. Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Danisovic L; Varga I; Polák S; Ulicná M; Hlavacková L; Böhmer D; Vojtassák J Gen Physiol Biophys; 2009 Mar; 28(1):56-62. PubMed ID: 19390137 [TBL] [Abstract][Full Text] [Related]
16. The regulatory mechanism of p38/MAPK in the chondrogenic differentiation from bone marrow mesenchymal stem cells. Ma N; Teng X; Zheng Q; Chen P J Orthop Surg Res; 2019 Dec; 14(1):434. PubMed ID: 31831024 [TBL] [Abstract][Full Text] [Related]
17. MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells through delicate interaction with TGF-beta1/Smads pathway. Li J; Zhao Z; Liu J; Huang N; Long D; Wang J; Li X; Liu Y Cell Prolif; 2010 Aug; 43(4):333-43. PubMed ID: 20590658 [TBL] [Abstract][Full Text] [Related]
18. p38 MAPK mediated in compressive stress-induced chondrogenesis of rat bone marrow MSCs in 3D alginate scaffolds. Li J; Zhao Z; Yang J; Liu J; Wang J; Li X; Liu Y J Cell Physiol; 2009 Dec; 221(3):609-17. PubMed ID: 19725071 [TBL] [Abstract][Full Text] [Related]
19. Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Fan H; Zhang C; Li J; Bi L; Qin L; Wu H; Hu Y Biomacromolecules; 2008 Mar; 9(3):927-34. PubMed ID: 18269244 [TBL] [Abstract][Full Text] [Related]
20. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. Weiss S; Hennig T; Bock R; Steck E; Richter W J Cell Physiol; 2010 Apr; 223(1):84-93. PubMed ID: 20049852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]