These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21971655)

  • 1. An optimized animal model for partial and total skin thickness burns studies.
    Campelo AP; Campelo MW; Britto GA; Ayala AP; Guimarães SB; Vasconcelos PR
    Acta Cir Bras; 2011; 26 Suppl 1():38-42. PubMed ID: 21971655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative animal model for studies of total skin thickness burns.
    Andrade ALM; Parisi JR; Brassolatti P; Parizotto NA
    Acta Cir Bras; 2017 Oct; 32(10):836-842. PubMed ID: 29160370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Partial-Thickness Burn Wounds in Rodents Using a New Experimental Burning Device.
    Sakamoto M; Morimoto N; Ogino S; Jinno C; Kawaguchi A; Kawai K; Suzuki S
    Ann Plast Surg; 2016 Jun; 76(6):652-8. PubMed ID: 27176561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel burn device for rapid, reproducible burn wound generation.
    Kim JY; Dunham DM; Supp DM; Sen CK; Powell HM
    Burns; 2016 Mar; 42(2):384-91. PubMed ID: 26803369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of rapid enzymatic debridement of deep partial-thickness burns with Debrase on wound reepithelialization in swine.
    Singer AJ; Taira BR; Anderson R; McClain SA; Rosenberg L
    J Burn Care Res; 2010; 31(5):795-802. PubMed ID: 20661148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cooling after scald injury to a dorsal skin fold of mouse.
    Blomgren I; Bagge U; Johansson BR
    Scand J Plast Reconstr Surg; 1985; 19(1):1-9. PubMed ID: 3895404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent morphological and biochemical changes following cutaneous thermal burn injury and their modulation by copper nicotinate complex: an animal model.
    Nassar MA; Eldien HM; Tawab HS; Saleem TH; Omar HM; Nassar AY; Hussein MR
    Ultrastruct Pathol; 2012 Oct; 36(5):343-55. PubMed ID: 23025652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of rapid and reproducible burn in animal model with a newly developed burn device.
    Shukla SK; Sharma AK; Shaw P; Kalonia A; Yashavarddhan MH; Singh S
    Burns; 2020 Aug; 46(5):1142-1149. PubMed ID: 32169381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Establishment of skin scald model in mice].
    Ren P; Guan DW; Zhao R; Ma WX; Zhang ST
    Fa Yi Xue Za Zhi; 2012 Apr; 28(2):92-4, 99. PubMed ID: 22619801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reepithelialization of mid-dermal porcine burns after rapid enzymatic debridement with Debrase®.
    Singer AJ; Taira BR; Anderson R; McClain SA; Rosenberg L
    J Burn Care Res; 2011; 32(6):647-53. PubMed ID: 21979853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of topical nitric oxide on healing of partial thickness porcine burns.
    Singer AJ; Choi Y; Rashel M; Toussaint J; McClain SA
    Burns; 2018 Mar; 44(2):423-428. PubMed ID: 28869060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental model to produce partial thickness burn wound.
    Bairy KL; Somayaji SN; Rao CM
    Indian J Exp Biol; 1997 Jan; 35(1):70-2. PubMed ID: 9279135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wound healing at adaptation zones of skin flaps harvested from acute burned skin.
    Akinbingol G; Borman H; Maral T; Uysal CA; Ozdemir H; Turkoglu S; Haberal M
    Burns; 2013 Sep; 39(6):1206-11. PubMed ID: 23541158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature controlled burn generation system based on a CO2 laser and a silver halide fiber optic radiometer.
    Cohen M; Ravid A; Scharf V; Hauben D; Katzir A
    Lasers Surg Med; 2003; 32(5):413-6. PubMed ID: 12766966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new apparatus for standardization of experimental burn models.
    Arda MS; Koçman AE; Söztutar E; Baksan B; Çetin C
    Burns; 2017 Sep; 43(6):1322-1329. PubMed ID: 28185803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of growth factor Sadat-Habdan mesenchymal stimulating peptide in healing of burn wounds.
    Al-Hoqail RA; Sadat-Ali M; Al-Habdan IM
    J Craniofac Surg; 2014 Mar; 25(2):639-44. PubMed ID: 24621713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of acute effects of Hypericum perforatum (St. John's Wort-Kantaron) treatment in experimental thermal burns and comparison with silver sulfadiazine treatment.
    Kıyan S; Uyanıkgil Y; Altuncı YA; Çavuşoğlu T; Çetin Uyanıkgil EÖ; Karabey F
    Ulus Travma Acil Cerrahi Derg; 2015 Sep; 21(5):323-36. PubMed ID: 26388268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental studies of moderate temperature burns.
    Suzuki T; Hirayama T; Aihara K; Hirohata Y
    Burns; 1991 Dec; 17(6):443-51. PubMed ID: 1793491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skin flap survival after superficial and deep partial-thickness burn injury.
    Borman H; Maral T; Demirhan B; Haberal M
    Ann Plast Surg; 1999 Nov; 43(5):513-8. PubMed ID: 10560867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High dose vitamin C counteracts the negative interstitial fluid hydrostatic pressure and early edema generation in thermally injured rats.
    Tanaka H; Lund T; Wiig H; Reed RK; Yukioka T; Matsuda H; Shimazaki S
    Burns; 1999 Nov; 25(7):569-74. PubMed ID: 10563680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.