BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 21971705)

  • 21. The translational regulatory function of SecM requires the precise timing of membrane targeting.
    Yap MN; Bernstein HD
    Mol Microbiol; 2011 Jul; 81(2):540-53. PubMed ID: 21635582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homogeneous stalled ribosome nascent chain complexes produced in vivo or in vitro.
    Evans MS; Ugrinov KG; Frese MA; Clark PL
    Nat Methods; 2005 Oct; 2(10):757-62. PubMed ID: 16179922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli.
    Sunohara T; Jojima K; Tagami H; Inada T; Aiba H
    J Biol Chem; 2004 Apr; 279(15):15368-75. PubMed ID: 14744860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ribosome. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo.
    Goldman DH; Kaiser CM; Milin A; Righini M; Tinoco I; Bustamante C
    Science; 2015 Apr; 348(6233):457-60. PubMed ID: 25908824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ABCF proteins in Escherichia coli individually cope with 'hard-to-translate' nascent peptide sequences.
    Chadani Y; Yamanouchi S; Uemura E; Yamasaki K; Niwa T; Ikeda T; Kurihara M; Iwasaki W; Taguchi H
    Nucleic Acids Res; 2024 Jun; 52(10):5825-5840. PubMed ID: 38661232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Translation arrest of SecM is essential for the basal and regulated expression of SecA.
    Murakami A; Nakatogawa H; Ito K
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12330-5. PubMed ID: 15302932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ribosome recycling factor and release factor 3 action promotes TnaC-peptidyl-tRNA Dropoff and relieves ribosome stalling during tryptophan induction of tna operon expression in Escherichia coli.
    Gong M; Cruz-Vera LR; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3147-55. PubMed ID: 17293419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements.
    Mitra K; Schaffitzel C; Fabiola F; Chapman MS; Ban N; Frank J
    Mol Cell; 2006 May; 22(4):533-43. PubMed ID: 16713583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploration of the arrest peptide sequence space reveals arrest-enhanced variants.
    Cymer F; Hedman R; Ismail N; von Heijne G
    J Biol Chem; 2015 Apr; 290(16):10208-15. PubMed ID: 25713070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues.
    Judd HNG; Martínez AK; Klepacki D; Vázquez-Laslop N; Sachs MS; Cruz-Vera LR
    J Biol Chem; 2024 Mar; 300(3):105780. PubMed ID: 38395310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amino acid sequence repertoire of the bacterial proteome and the occurrence of untranslatable sequences.
    Navon SP; Kornberg G; Chen J; Schwartzman T; Tsai A; Puglisi EV; Puglisi JD; Adir N
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7166-70. PubMed ID: 27307442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanism of drug-dependent ribosome stalling.
    Vazquez-Laslop N; Thum C; Mankin AS
    Mol Cell; 2008 Apr; 30(2):190-202. PubMed ID: 18439898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall.
    Muto H; Nakatogawa H; Ito K
    Mol Cell; 2006 May; 22(4):545-52. PubMed ID: 16713584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site.
    Starosta AL; Lassak J; Peil L; Atkinson GC; Virumäe K; Tenson T; Remme J; Jung K; Wilson DN
    Nucleic Acids Res; 2014; 42(16):10711-9. PubMed ID: 25143529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsic Ribosome Destabilization Underlies Translation and Provides an Organism with a Strategy of Environmental Sensing.
    Chadani Y; Niwa T; Izumi T; Sugata N; Nagao A; Suzuki T; Chiba S; Ito K; Taguchi H
    Mol Cell; 2017 Nov; 68(3):528-539.e5. PubMed ID: 29100053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural Basis for Polyproline-Mediated Ribosome Stalling and Rescue by the Translation Elongation Factor EF-P.
    Huter P; Arenz S; Bock LV; Graf M; Frister JO; Heuer A; Peil L; Starosta AL; Wohlgemuth I; Peske F; Nováček J; Berninghausen O; Grubmüller H; Tenson T; Beckmann R; Rodnina MV; Vaiana AC; Wilson DN
    Mol Cell; 2017 Nov; 68(3):515-527.e6. PubMed ID: 29100052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel.
    Lawrence MG; Lindahl L; Zengel JM
    J Bacteriol; 2008 Sep; 190(17):5862-9. PubMed ID: 18586934
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nascent-peptide-mediated ribosome stalling at a stop codon induces mRNA cleavage resulting in nonstop mRNA that is recognized by tmRNA.
    Sunohara T; Jojima K; Yamamoto Y; Inada T; Aiba H
    RNA; 2004 Mar; 10(3):378-86. PubMed ID: 14970383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative genomics study on the effect of individual amino acids on ribosome stalling.
    Sabi R; Tuller T
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S5. PubMed ID: 26449596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
    Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP
    Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.