BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 21972142)

  • 1. Resolution of 2-nitroalcohols by Burkholderia cepacia lipase-catalyzed enantioselective acylation.
    Li N; Hu SB; Feng GY
    Biotechnol Lett; 2012 Jan; 34(1):153-8. PubMed ID: 21972142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regioselectivity-reversal in acylation of 6-azauridine catalyzed by Burkholderia cepacia lipase.
    Wang ZY; Bi YH; Zong MH
    Biotechnol Lett; 2012 Jan; 34(1):55-9. PubMed ID: 21898129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.
    Andrade LH; Barcellos T
    Org Lett; 2009 Jul; 11(14):3052-5. PubMed ID: 19552446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.
    Schulz T; Pleiss J; Schmid RD
    Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol.
    Xie C; Wu B; Qin S; He B
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):59-66. PubMed ID: 26497492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous esterification by lipase from Burkholderia cepacia in the fluorinated solvent.
    Shipovskov S
    Biotechnol Prog; 2008; 24(6):1262-6. PubMed ID: 19194939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structure-controlled investigation of lipase enantioselectivity by a path-planning approach.
    Guieysse D; Cortés J; Puech-Guenot S; Barbe S; Lafaquière V; Monsan P; Siméon T; André I; Remaud-Siméon M
    Chembiochem; 2008 May; 9(8):1308-17. PubMed ID: 18418817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of enzyme activity and enantioselectivity by cyclopentyl methyl ether in the transesterification catalyzed by Pseudomonas cepacia lipase co-lyophilized with cyclodextrins.
    Mine Y; Zhang L; Fukunaga K; Sugimura Y
    Biotechnol Lett; 2005 Mar; 27(6):383-8. PubMed ID: 15834802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Easy preparation of enantiomerically enriched heteroaromatic alcohols through lipase-catalyzed acylation with succinic anhydride under unconventional activation.
    Melais N; Boukachabia M; Aribi-Zouioueche L; Riant O
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1579-88. PubMed ID: 25957778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient and enzymatic regioselective undecylenoylation of gastrodin in 2-methyltetrahydrofuran-containing systems.
    Yang R; Liu X; Chen Z; Yang C; Lin Y; Wang S
    PLoS One; 2014; 9(10):e110342. PubMed ID: 25329539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificity of lipase from Burkholderia cepacia in the synthesis of 3'-arylaliphatic acid esters of floxuridine.
    Li N; Zeng QM; Zong MH
    J Biotechnol; 2009 Jul; 142(3-4):267-70. PubMed ID: 19539679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining lipase-catalyzed enantiomer-selective acylation with fluorous phase labeling: a new method for the resolution of racemic alcohols.
    Hungerhoff B; Sonnenschein H; Theil F
    J Org Chem; 2002 Mar; 67(6):1781-5. PubMed ID: 11895393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic-surfactant-coated Burkholderia cepacia lipase as a highly active and enantioselective catalyst for the dynamic kinetic resolution of secondary alcohols.
    Kim H; Choi YK; Lee J; Lee E; Park J; Kim MJ
    Angew Chem Int Ed Engl; 2011 Nov; 50(46):10944-8. PubMed ID: 21954139
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinetic resolution of (+/-)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases.
    Shah S; Gupta MN
    Bioorg Med Chem Lett; 2007 Feb; 17(4):921-4. PubMed ID: 17157018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipase entrapment in protamine-induced bio-zirconia particles: characterization and application to the resolution of (R,S)-1-phenylethanol.
    Wang JY; Ma CL; Bao YM; Xu PS
    Enzyme Microb Technol; 2012 Jun; 51(1):40-6. PubMed ID: 22579389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic resolution of racemic alpha-methyl-beta-propiothiolactone by lipase-catalyzed hydrolysis.
    Hwang BY; Lee HB; Kim YG; Kim BG
    Biotechnol Prog; 2000; 16(6):973-8. PubMed ID: 11101323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling.
    Mathpati AC; Bhanage BM
    J Biotechnol; 2018 Oct; 283():70-80. PubMed ID: 30031094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic resolution of 4-chloro-2-(1-hydroxyalkyl)pyridines using Pseudomonas cepacia lipase.
    Busto E; Gotor-Fernández V; Gotor V
    Nat Protoc; 2006; 1(4):2061-7. PubMed ID: 17487195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redesign of enzyme for improving catalytic activity and enantioselectivity toward poor substrates: manipulation of the transition state.
    Ema T; Nakano Y; Yoshida D; Kamata S; Sakai T
    Org Biomol Chem; 2012 Aug; 10(31):6299-308. PubMed ID: 22710791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ evaluation of lipase performances through dynamic asymmetric cyanohydrin resolution.
    Sakulsombat M; Vongvilai P; Ramström O
    Org Biomol Chem; 2011 Feb; 9(4):1112-7. PubMed ID: 21170452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.