These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21972500)

  • 1. Effects of light regime, temperature, and plant age on uptake of arsenic by Spartina pectinata and Carex stricta.
    Rofkar JR; Dwyer DF
    Int J Phytoremediation; 2011 Jul; 13(6):528-37. PubMed ID: 21972500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irrigation of three wetland species and a hyperaccumlating fern with arsenic-laden solutions: observations of growth, arsenic uptake, nutrient status, and chlorophyll content.
    Rofkar JR; Dwyer DF
    Int J Phytoremediation; 2013; 15(6):561-72. PubMed ID: 23819297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greater seasonal carbon gain across a broad temperature range contributes to the invasive potential of Phalaris arundinacea (Poaceae; reed canary grass) over the native sedge Carex stricta (Cyperaceae).
    He Z; Bentley LP; Holaday AS
    Am J Bot; 2011 Jan; 98(1):20-30. PubMed ID: 21613081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of arsenic tolerance, uptake and accumulation between arsenic hyperaccumulator, Pteris vittata L. and non-accumulator, P. semipinnata L.--a hydroponic study.
    Lou LQ; Ye ZH; Wong MH
    J Hazard Mater; 2009 Nov; 171(1-3):436-42. PubMed ID: 19577839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoextraction of arsenic from soil by Leersia oryzoides.
    Ampiah-Bonney RJ; Tyson JF; Lanza GR
    Int J Phytoremediation; 2007; 9(1):31-40. PubMed ID: 18246713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability.
    Holaday AS; Schwilk DW; Waring EF; Guvvala H; Griffin CM; Lewis OM
    J Plant Physiol; 2015 Apr; 177():20-29. PubMed ID: 25659333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of light on seed germination of eight wetland Carex species.
    Kettenring KM; Gardner G; Galatowitsch SM
    Ann Bot; 2006 Oct; 98(4):869-74. PubMed ID: 16905568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of soil properties and phosphate addition on arsenic uptake from polluted soils by velvetgrass (Holcus lanatus).
    Lewińska K; Karczewska A
    Int J Phytoremediation; 2013; 15(1):91-104. PubMed ID: 23487988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and translocation of heavy metals in salt marsh sediments by Spartina patens.
    Suntornvongsagul K; Burke D; Hahn D
    Bull Environ Contam Toxicol; 2007 Apr; 78(3-4):275-9. PubMed ID: 17440673
    [No Abstract]   [Full Text] [Related]  

  • 11. Temperature, plant species and residence time effects on nitrogen removal in model treatment wetlands.
    Allen CR; Stein OR; Hook PB; Burr MD; Parker AE; Hafla EC
    Water Sci Technol; 2013; 68(11):2337-43. PubMed ID: 24334880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L.
    Sun L; Yan X; Liao X; Wen Y; Chong Z; Liang T
    Environ Pollut; 2011 Dec; 159(12):3398-405. PubMed ID: 21924806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory study of heavy metal phytoremediation by three wetland macrophytes.
    Weiss J; Hondzo M; Biesboer D; Semmens M
    Int J Phytoremediation; 2006; 8(3):245-59. PubMed ID: 17120528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure.
    Selamat SN; Abdullah SR; Idris M
    Int J Phytoremediation; 2014; 16(7-12):694-703. PubMed ID: 24933879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?
    Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM
    Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle.
    Xue PY; Yan CZ
    Chemosphere; 2011 Nov; 85(7):1176-81. PubMed ID: 22024098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants.
    Li H; Ye ZH; Wei ZJ; Wong MH
    Environ Pollut; 2011 Jan; 159(1):30-37. PubMed ID: 20970900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scale-dependent inhibition drives regular tussock spacing in a freshwater marsh.
    van de Koppel J; Crain CM
    Am Nat; 2006 Nov; 168(5):E136-47. PubMed ID: 17080356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ phytoextraction of polychlorinated biphenyl - (PCB)contaminated soil.
    Whitfield Aslund ML; Zeeb BA; Rutter A; Reimer KJ
    Sci Total Environ; 2007 Mar; 374(1):1-12. PubMed ID: 17258285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata.
    Wang X; Ma LQ; Rathinasabapathi B; Cai Y; Liu YG; Zeng GM
    Environ Sci Technol; 2011 Nov; 45(22):9719-25. PubMed ID: 22029254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.