BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21972501)

  • 1. Lead, chromium and manganese removal by in vitro root cultures of two aquatic macrophytes species: Typha latifolia L. and Scirpus americanus pers.
    Santos-Díaz Mdel S; Barrón-Cruz Mdel C
    Int J Phytoremediation; 2011 Jul; 13(6):538-51. PubMed ID: 21972501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removing heavy metals by in vitro cultures.
    Santos-Díaz Mdel S; Barrón-Cruz Mdel C
    Methods Mol Biol; 2012; 877():265-70. PubMed ID: 22610634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal and accumulation of As, Cd and Cr by Typha latifolia.
    Leura-Vicencio A; Alonso-Castro AJ; Carranza-Álvarez C; Loredo-Portales R; Alfaro-De la Torre MC; García-De la Cruz RF
    Bull Environ Contam Toxicol; 2013 Jun; 90(6):650-3. PubMed ID: 23400863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P
    Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of high lead concentration by hydroponic cultures of normal and transformed plants of Scirpus americanus Pers.
    Esquivel-Ramos E; Alfaro-de la Torre MC; Santos-Díaz MDS
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28279-28289. PubMed ID: 38532219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions.
    Alonso-Castro AJ; Carranza-Alvarez C; Alfaro-De la Torre MC; Chávez-Guerrero L; García-De la Cruz RF
    Arch Environ Contam Toxicol; 2009 Nov; 57(4):688-96. PubMed ID: 19536587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial variation of heavy metals and uptake potential by Typha domingensis in a tropical reservoir in the midlands region, Zimbabwe.
    Dube T; Mhangwa G; Makaka C; Parirenyatwa B; Muteveri T
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10097-10105. PubMed ID: 30756354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.
    Kumari M; Tripathi BD
    Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.
    Klink A
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal Accumulation Strategies of Emergent Plants in Natural Wetland Ecosystems Contaminated with Coke-Oven Effluent.
    Rana V; Maiti SK
    Bull Environ Contam Toxicol; 2018 Jul; 101(1):55-60. PubMed ID: 29761304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremedial Potential of Typha latifolia, Eichornia crassipes and Monochoria hastata found in Contaminated Water Bodies Across Ranchi City (India).
    Hazra M; Avishek K; Pathak G
    Int J Phytoremediation; 2015; 17(9):835-40. PubMed ID: 26083824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water.
    Shahid MJ; Ali S; Shabir G; Siddique M; Rizwan M; Seleiman MF; Afzal M
    Chemosphere; 2020 Mar; 243():125353. PubMed ID: 31765899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland.
    Rana V; Maiti SK
    Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytotoxicity of wastewater containing lead (Pb) effects Scirpus grossus.
    Tangahu BV; Abdullah SR; Basri H; Idris M; Anuar N; Mukhlisin M
    Int J Phytoremediation; 2013; 15(8):814-26. PubMed ID: 23819277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquatic macrophytes mediated remediation of toxic metals from moderately contaminated industrial effluent.
    Saraswat S; Rai DJPN
    Int J Phytoremediation; 2018 Jul; 20(9):876-884. PubMed ID: 29873544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands.
    Anning AK; Korsah PE; Addo-Fordjour P
    Int J Phytoremediation; 2013; 15(5):452-64. PubMed ID: 23488171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn.
    Mufarrege MM; Hadad HR; Di Luca GA; Maine MA
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):286-92. PubMed ID: 25062549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.