These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
655 related articles for article (PubMed ID: 21972504)
1. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus. Chandra R; Yadav S Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504 [TBL] [Abstract][Full Text] [Related]
2. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Kumari M; Tripathi BD Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam. and Typha angustifolia L. grown in hydroponics. Chayapan P; Kruatrachue M; Meetam M; Pokethitiyook P J Environ Biol; 2015 Sep; 36(5):1179-83. PubMed ID: 26521563 [TBL] [Abstract][Full Text] [Related]
4. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands. Galal TM; Gharib FA; Ghazi SM; Mansour KH Environ Sci Pollut Res Int; 2017 Sep; 24(27):21636-21648. PubMed ID: 28752307 [TBL] [Abstract][Full Text] [Related]
5. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. Yang H; Wong JW; Yang ZM; Zhou LX J Environ Sci (China); 2001 Jul; 13(3):368-75. PubMed ID: 11590773 [TBL] [Abstract][Full Text] [Related]
6. Phytoremediation potential of Phragmites australis in Hokersar wetland - a Ramsar site of Kashmir Himalaya. Ahmad SS; Reshi ZA; Shah MA; Rashid I; Ara R; Andrabi SM Int J Phytoremediation; 2014; 16(7-12):1183-91. PubMed ID: 24933910 [TBL] [Abstract][Full Text] [Related]
7. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Klink A Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Bonanno G; Cirelli GL Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817 [TBL] [Abstract][Full Text] [Related]
9. Seasonal variations of some heavy metals in common reed (Phragmites australis (Cav.) Trin. Ex. Steudel) and narrow-leaved cattail (Typha angustifolia L.) in Eğirdir Lake (Turkey) and the possibility of using for phytoremediation of these macrophytes. Özçelik Ş; Tekin-Özan S Environ Sci Pollut Res Int; 2023 Nov; 30(52):112194-112205. PubMed ID: 37831255 [TBL] [Abstract][Full Text] [Related]
10. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China. Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779 [TBL] [Abstract][Full Text] [Related]
11. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
12. Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia. Bah AM; Dai H; Zhao J; Sun H; Cao F; Zhang G; Wu F Biol Trace Elem Res; 2011 Jul; 142(1):77-92. PubMed ID: 20552296 [TBL] [Abstract][Full Text] [Related]
13. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Demirezen D; Aksoy A Chemosphere; 2004 Aug; 56(7):685-96. PubMed ID: 15234165 [TBL] [Abstract][Full Text] [Related]
14. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Gupta AK; Sinha S Chemosphere; 2006 Jun; 64(1):161-73. PubMed ID: 16330080 [TBL] [Abstract][Full Text] [Related]
15. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Muhammad D; Chen F; Zhao J; Zhang G; Wu F Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355 [TBL] [Abstract][Full Text] [Related]
16. Impact of elemental uptake in the root chemistry of wetland plants. Aryal R; Nirola R; Beecham S; Kamruzzaman M Int J Phytoremediation; 2016 Sep; 18(9):936-42. PubMed ID: 26709636 [TBL] [Abstract][Full Text] [Related]
17. Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds. Alhashemi AS; Karbassi AR; Kiabi BH; Monavari SM; Nabavi SM; Sekhavatjou MS Biol Trace Elem Res; 2011 Sep; 142(3):500-16. PubMed ID: 20694580 [TBL] [Abstract][Full Text] [Related]
18. Behavior of native species Arrhenatherum elatius (Poaceae) and Sonchus transcaspicus (Asteraceae) exposed to a heavy metal-polluted field: plant metal concentration, phytotoxicity, and detoxification responses. Lu Y; Li X; He M; Zeng F Int J Phytoremediation; 2013; 15(10):924-37. PubMed ID: 23819286 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon. Lum AF; Ngwa ES; Chikoye D; Suh CE Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226 [TBL] [Abstract][Full Text] [Related]
20. Investigating Co, Cu, and Pb retention and remobilization after drying and rewetting treatments in greenhouse laboratory-scale constructed treatments with and without Typha angustifolia, and connected phytoremediation potential. Nabuyanda MM; van Bruggen J; Kelderman P; Irvine K J Environ Manage; 2019 Apr; 236():510-518. PubMed ID: 30771671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]