These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 21972512)
1. Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments. Tanhan P; Pokethitiyook P; Kruatrachue M; Chaiyarat R; Upatham S Int J Phytoremediation; 2011 Oct; 13(9):897-911. PubMed ID: 21972512 [TBL] [Abstract][Full Text] [Related]
2. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus. Jampasri K; Pokethitiyook P; Kruatrachue M; Ounjai P; Kumsopa A Int J Phytoremediation; 2016 Oct; 18(10):994-1001. PubMed ID: 27159380 [TBL] [Abstract][Full Text] [Related]
3. Lead uptake and translocation by willows in pot and field experiments. Zhivotovsky OP; Kuzovkina YA; Schulthess CP; Morris T; Pettinelli D Int J Phytoremediation; 2011 Sep; 13(8):731-49. PubMed ID: 21972515 [TBL] [Abstract][Full Text] [Related]
4. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Tanhan P; Kruatrachue M; Pokethitiyook P; Chaiyarat R Chemosphere; 2007 Jun; 68(2):323-9. PubMed ID: 17280700 [TBL] [Abstract][Full Text] [Related]
5. Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Rotkittikhun P; Chaiyarat R; Kruatrachue M; Pokethitiyook P; Baker AJ Chemosphere; 2007 Jan; 66(1):45-53. PubMed ID: 16828842 [TBL] [Abstract][Full Text] [Related]
6. Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil. Begonia MT; Begonia GB; Ighoavodha M; Gilliard D Int J Environ Res Public Health; 2005 Aug; 2(2):228-33. PubMed ID: 16705822 [TBL] [Abstract][Full Text] [Related]
7. Phytoextraction of lead from firing range soil by Vetiver grass. Wilde EW; Brigmon RL; Dunn DL; Heitkamp MA; Dagnan DC Chemosphere; 2005 Dec; 61(10):1451-7. PubMed ID: 15964059 [TBL] [Abstract][Full Text] [Related]
8. Polyaspartate and liquid amino acid fertilizer are appropriate alternatives for promoting the phytoextraction of cadmium and lead in Solanum nigrum L. He X; Zhang J; Ren Y; Sun C; Deng X; Qian M; Hu Z; Li R; Chen Y; Shen Z; Xia Y Chemosphere; 2019 Dec; 237():124483. PubMed ID: 31404738 [TBL] [Abstract][Full Text] [Related]
9. EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana. Wang HQ; Lu SJ; Li H; Yao ZH J Environ Sci (China); 2007; 19(12):1496-9. PubMed ID: 18277655 [TBL] [Abstract][Full Text] [Related]
10. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. Attinti R; Barrett KR; Datta R; Sarkar D Environ Pollut; 2017 Jun; 225():524-533. PubMed ID: 28318794 [TBL] [Abstract][Full Text] [Related]
11. Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil. Surat W; Kruatrachue M; Pokethitiyook P; Tanhan P; Samranwanich T Int J Phytoremediation; 2008; 10():325-42. PubMed ID: 19260217 [TBL] [Abstract][Full Text] [Related]
12. The potential of Chromolaena odorata (L) to decontaminate used engine oil impacted soil under greenhouse conditions. Atagana HI Int J Phytoremediation; 2011 Aug; 13(7):627-41. PubMed ID: 21972491 [TBL] [Abstract][Full Text] [Related]
13. Optimization of chelator-assisted phytoextraction, using EDTA, lead and Sedum alfredii Hance as a model system. Liu D; Islam E; Ma J; Wang X; Mahmood Q; Jin X; Li T; Yang X; Gupta D Bull Environ Contam Toxicol; 2008 Jul; 81(1):30-5. PubMed ID: 18484226 [TBL] [Abstract][Full Text] [Related]
14. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Luo C; Shen Z; Li X; Baker AJ Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960 [TBL] [Abstract][Full Text] [Related]
15. Assessment of the efficacy of chelate-assisted phytoextraction of lead by coffeeweed (Sesbania exaltata Raf.). Miller G; Begonia G; Begonia M; Ntoni J; Hundley O Int J Environ Res Public Health; 2008 Dec; 5(5):428-35. PubMed ID: 19151439 [TBL] [Abstract][Full Text] [Related]
16. How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata. Du RJ; He EK; Tang YT; Hu PJ; Ying RR; Morel JL; Qiu RL Int J Phytoremediation; 2011; 13(10):1024-36. PubMed ID: 21972569 [TBL] [Abstract][Full Text] [Related]
17. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Jiang M; Liu S; Li Y; Li X; Luo Z; Song H; Chen Q Ecotoxicol Environ Saf; 2019 Apr; 170():502-512. PubMed ID: 30557708 [TBL] [Abstract][Full Text] [Related]
18. EDTA-enhanced phytoremediation of lead-contaminated soil by the halophyte Sesuvium portulacastrum. Zaier H; Ghnaya T; Ghabriche R; Chmingui W; Lakhdar A; Lutts S; Abdelly C Environ Sci Pollut Res Int; 2014 Jun; 21(12):7607-15. PubMed ID: 24604274 [TBL] [Abstract][Full Text] [Related]
19. Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil. Tang X; Li X; Liu X; Hashmi MZ; Xu J; Brookes PC Chemosphere; 2015 Jan; 119():177-183. PubMed ID: 24992219 [TBL] [Abstract][Full Text] [Related]
20. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study. Li H; Wang Q; Cui Y; Dong Y; Christie P Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]