These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 21972569)
1. How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata. Du RJ; He EK; Tang YT; Hu PJ; Ying RR; Morel JL; Qiu RL Int J Phytoremediation; 2011; 13(10):1024-36. PubMed ID: 21972569 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. López ML; Peralta-Videa JR; Benitez T; Gardea-Torresdey JL Chemosphere; 2005 Oct; 61(4):595-8. PubMed ID: 16202815 [TBL] [Abstract][Full Text] [Related]
3. Promising role of plant hormones in translocation of lead in Sesbania drummondii shoots. Israr M; Sahi SV Environ Pollut; 2008 May; 153(1):29-36. PubMed ID: 18272272 [TBL] [Abstract][Full Text] [Related]
4. The improved phytoextraction of lead (Pb) and the growth of maize (Zeamays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Hadi F; Bano A; Fuller MP Chemosphere; 2010 Jun; 80(4):457-62. PubMed ID: 20435330 [TBL] [Abstract][Full Text] [Related]
5. Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil. Liphadzi MS; Kirkham MB; Paulsen GM Environ Technol; 2006 Jun; 27(6):695-704. PubMed ID: 16865925 [TBL] [Abstract][Full Text] [Related]
6. Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Fässler E; Evangelou MW; Robinson BH; Schulin R Chemosphere; 2010 Aug; 80(8):901-7. PubMed ID: 20537682 [TBL] [Abstract][Full Text] [Related]
7. Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent. Ali N; Hadi F Environ Sci Pollut Res Int; 2015 Sep; 22(17):13305-18. PubMed ID: 25940488 [TBL] [Abstract][Full Text] [Related]
8. [Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid]. Zhou JM; Dang Z; Chen NC; Xu SG; Xie ZY Huan Jing Ke Xue; 2007 Sep; 28(9):2085-8. PubMed ID: 17990562 [TBL] [Abstract][Full Text] [Related]
9. Lead uptake and translocation by willows in pot and field experiments. Zhivotovsky OP; Kuzovkina YA; Schulthess CP; Morris T; Pettinelli D Int J Phytoremediation; 2011 Sep; 13(8):731-49. PubMed ID: 21972515 [TBL] [Abstract][Full Text] [Related]
10. EFFECT OF INDOLE-3-ACETIC ACID, KINETIN, AND ETHYLENEDIAMINETETRAACETIC ACID ON PLANT GROWTH AND UPTAKE AND TRANSLOCATION OF LEAD, MICRONUTRIENTS, AND MACRONUTRIENTS IN ALFALFA PLANTS. López ML; Peralta-Videa JR; Parsons JG; Gardea-Torresdey JL; Duarte-Gardea M Int J Phytoremediation; 2009 Feb; 11(2):131-149. PubMed ID: 28133995 [TBL] [Abstract][Full Text] [Related]
11. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study. Li H; Wang Q; Cui Y; Dong Y; Christie P Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768 [TBL] [Abstract][Full Text] [Related]
12. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead. Guo J; Feng R; Ding Y; Wang R J Environ Manage; 2014 Aug; 141():1-8. PubMed ID: 24762567 [TBL] [Abstract][Full Text] [Related]
13. Gibberellic acid, kinetin, and the mixture indole-3-acetic acid-kinetin assisted with EDTA-induced lead hyperaccumnulation in alfalfa plants. López ML; Peralta-Videa JR; Parsons JG; Benitez T; Gardea-Torresdey JL Environ Sci Technol; 2007 Dec; 41(23):8165-70. PubMed ID: 18186354 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of lead uptake by hyperaccumulator plant species Sedum alfredii hance using EDTA and IAA. Liu D; Li T; Yang X; Islam E; Jin X; Mahmood Q Bull Environ Contam Toxicol; 2007 Apr; 78(3-4):280-3. PubMed ID: 17437053 [No Abstract] [Full Text] [Related]
15. Lead toxicity in alfalfa plants exposed to phytohormones and ethylenediaminetetraacetic acid monitored by peroxidase, catalase, and amylase activities. López ML; Peralta-Videa JR; Castillo-Michel H; Martinez-Martinez A; Duarte-Gardea M; Gardea-Torresdey JL Environ Toxicol Chem; 2007 Dec; 26(12):2717-23. PubMed ID: 18020698 [TBL] [Abstract][Full Text] [Related]
16. Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments. Tanhan P; Pokethitiyook P; Kruatrachue M; Chaiyarat R; Upatham S Int J Phytoremediation; 2011 Oct; 13(9):897-911. PubMed ID: 21972512 [TBL] [Abstract][Full Text] [Related]
17. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Lai HY; Chen ZS Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153 [TBL] [Abstract][Full Text] [Related]
19. Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil. Begonia MT; Begonia GB; Ighoavodha M; Gilliard D Int J Environ Res Public Health; 2005 Aug; 2(2):228-33. PubMed ID: 16705822 [TBL] [Abstract][Full Text] [Related]
20. EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana. Wang HQ; Lu SJ; Li H; Yao ZH J Environ Sci (China); 2007; 19(12):1496-9. PubMed ID: 18277655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]