These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 21972782)

  • 1. Spectroscopic and electronic structure studies probing covalency contributions to C-H bond activation and transition-state stabilization in xanthine oxidase.
    Sempombe J; Stein B; Kirk ML
    Inorg Chem; 2011 Nov; 50(21):10919-28. PubMed ID: 21972782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlating C-H bond cleavage with molybdenum reduction in xanthine oxidase.
    Kirk ML; Berhane A
    Chem Biodivers; 2012 Sep; 9(9):1756-60. PubMed ID: 22976967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of the oxomolybdenum-thiolate pi-bond: implications for Mo-S bonding in sulfite oxidase and xanthine oxidase.
    McNaughton RL; Helton ME; Cosper MM; Enemark JH; Kirk ML
    Inorg Chem; 2004 Mar; 43(5):1625-37. PubMed ID: 14989655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies.
    Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ
    Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical description of dihydrogen/hydride and trihydride molybdocene complexes: an insight from static and molecular dynamics simulations.
    Piękoś Ł; Mitoraj MP
    J Comput Chem; 2013 Feb; 34(4):294-304. PubMed ID: 23015483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the mechanism of aldehyde oxidase and xanthine oxidase.
    Alfaro JF; Jones JP
    J Org Chem; 2008 Dec; 73(23):9469-72. PubMed ID: 18998731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxo, sulfido, and tellurido Mo-enedithiolate models for xanthine oxidase: understanding the basis of enzyme reactivity.
    Ilich P; Hille R
    J Am Chem Soc; 2002 Jun; 124(24):6796-7. PubMed ID: 12059179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes.
    Gates C; Varnum H; Getty C; Loui N; Chen J; Kirk ML; Yang J; Nieter Burgmayer SJ
    Inorg Chem; 2022 Sep; 61(35):13728-13742. PubMed ID: 36000991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure contributions to reactivity in xanthine oxidase family enzymes.
    Stein BW; Kirk ML
    J Biol Inorg Chem; 2015 Mar; 20(2):183-94. PubMed ID: 25425163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic spectral studies of molybdenyl complexes. 2. MCD spectroscopy of [MoOS4]- centers.
    McMaster J; Carducci MD; Yang YS; Solomon EI; Enemark JH
    Inorg Chem; 2001 Feb; 40(4):687-702. PubMed ID: 11225111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analogues for the molybdenum center of sulfite oxidase: oxomolybdenum(V) complexes with three thiolate sulfur donor atoms.
    Mader ML; Carducci MD; Enemark JH
    Inorg Chem; 2000 Feb; 39(3):525-31. PubMed ID: 11229572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxyl and hydroxyl radical transfer in mitochondrial amidoxime reducing component-catalyzed nitrite reduction.
    Yang J; Giles LJ; Ruppelt C; Mendel RR; Bittner F; Kirk ML
    J Am Chem Soc; 2015 Apr; 137(16):5276-9. PubMed ID: 25897643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray crystal structure and EPR spectra of "arsenite-inhibited" Desulfovibriogigas aldehyde dehydrogenase: a member of the xanthine oxidase family.
    Boer DR; Thapper A; Brondino CD; Romão MJ; Moura JJ
    J Am Chem Soc; 2004 Jul; 126(28):8614-5. PubMed ID: 15250689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 35 GHz ENDOR characterization of the "very rapid" signal of xanthine oxidase reacted with 2-hydroxy-6-methylpurine (13C8): evidence against direct Mo-C8 interaction.
    Manikandan P; Choi EY; Hille R; Hoffman BM
    J Am Chem Soc; 2001 Mar; 123(11):2658-63. PubMed ID: 11456936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and kinetic studies of Arabidopsis thaliana sulfite oxidase: nature of the redox-active orbital and electronic structure contributions to catalysis.
    Hemann C; Hood BL; Fulton M; Hänsch R; Schwarz G; Mendel RR; Kirk ML; Hille R
    J Am Chem Soc; 2005 Nov; 127(47):16567-77. PubMed ID: 16305246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization and unusual reactivity of oxosulfido-Mo(V) compounds: implications for the structure and electronic description of the very rapid form of xanthine oxidase.
    Ng VW; White JM; Young CG
    J Am Chem Soc; 2013 May; 135(19):7106-9. PubMed ID: 23631347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance Raman studies on xanthine oxidase: observation of Mo(VI)-ligand vibrations.
    Maiti NC; Tomita T; Kitagawa T; Okamoto K; Nishino T
    J Biol Inorg Chem; 2003 Feb; 8(3):327-33. PubMed ID: 12589568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of {[HIPTN(3)N]Mo(III)H}(-) by heterolytic cleavage of H(2) as established by EPR and ENDOR spectroscopy.
    Kinney RA; Hetterscheid DG; Hanna BS; Schrock RR; Hoffman BM
    Inorg Chem; 2010 Jan; 49(2):704-13. PubMed ID: 20000748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An MCD spectroscopic study of the molybdenum active site in sulfite oxidase: insight into the role of coordinated cysteine.
    Helton ME; Pacheco A; McMaster J; Enemark JH; Kirk ML
    J Inorg Biochem; 2000 Jul; 80(3-4):227-33. PubMed ID: 11001093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple boron-boron bonds in neutral molecules: an insight from the extended transition state method and the natural orbitals for chemical valence scheme.
    Mitoraj MP; Michalak A
    Inorg Chem; 2011 Mar; 50(6):2168-74. PubMed ID: 21314143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.