These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 21972958)
1. Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis. Blanch JS; Sampedro L; Llusià J; Moreira X; Zas R; Peñuelas J Plant Biol (Stuttg); 2012 Mar; 14 Suppl 1():66-72. PubMed ID: 21972958 [TBL] [Abstract][Full Text] [Related]
2. Induced defenses change the chemical composition of pine seedlings and influence meal properties of the pine weevil Hylobius abietis. Lundborg L; Fedderwitz F; Björklund N; Nordlander G; Borg-Karlson AK Phytochemistry; 2016 Oct; 130():99-105. PubMed ID: 27417987 [TBL] [Abstract][Full Text] [Related]
3. Activation of defence pathways in Scots pine bark after feeding by pine weevil (Hylobius abietis). Kovalchuk A; Raffaello T; Jaber E; Keriö S; Ghimire R; Lorenz WW; Dean JF; Holopainen JK; Asiegbu FO BMC Genomics; 2015 May; 16(1):352. PubMed ID: 25943104 [TBL] [Abstract][Full Text] [Related]
4. Genetics, phosphorus availability, and herbivore-derived induction as sources of phenotypic variation of leaf volatile terpenes in a pine species. Sampedro L; Moreira X; Llusia J; Peñuelas J; Zas R J Exp Bot; 2010 Oct; 61(15):4437-47. PubMed ID: 20952630 [TBL] [Abstract][Full Text] [Related]
5. Inducibility of chemical defences by two chewing insect herbivores in pine trees is specific to targeted plant tissue, particular herbivore and defensive trait. Moreira X; Lundborg L; Zas R; Carrillo-Gavilán A; Borg-Karlson AK; Sampedro L Phytochemistry; 2013 Oct; 94():113-22. PubMed ID: 23768645 [TBL] [Abstract][Full Text] [Related]
6. Methyl Jasmonate-Induced Monoterpenes in Scots Pine and Norway Spruce Tissues Affect Pine Weevil Orientation. Lundborg L; Nordlander G; Björklund N; Nordenhem H; Borg-Karlson AK J Chem Ecol; 2016 Dec; 42(12):1237-1246. PubMed ID: 27896555 [TBL] [Abstract][Full Text] [Related]
7. The use of compost in afforestation of Mediterranean areas: Effects on soil properties and young tree seedlings. Larchevêque M; Ballini C; Korboulewsky N; Montès N Sci Total Environ; 2006 Oct; 369(1-3):220-30. PubMed ID: 16762400 [TBL] [Abstract][Full Text] [Related]
8. Compost may affect volatile and semi-volatile plant emissions through nitrogen supply and chlorophyll fluorescence. Ormeño E; Olivier R; Mévy JP; Baldy V; Fernandez C Chemosphere; 2009 Sep; 77(1):94-104. PubMed ID: 19539976 [TBL] [Abstract][Full Text] [Related]
9. Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: effect of soil nutrients. Ormeño E; Baldy V; Ballini C; Fernandez C J Chem Ecol; 2008 Sep; 34(9):1219-29. PubMed ID: 18670820 [TBL] [Abstract][Full Text] [Related]
10. Antifeedants Produced by Bacteria Associated with the Gut of the Pine Weevil Hylobius abietis. Axelsson K; Konstanzer V; Rajarao GK; Terenius O; Seriot L; Nordenhem H; Nordlander G; Borg-Karlson AK Microb Ecol; 2017 Jul; 74(1):177-184. PubMed ID: 28074245 [TBL] [Abstract][Full Text] [Related]
11. Pine weevil feeding on Norway spruce bark has a stronger impact on needle VOC emissions than enhanced ultraviolet-B radiation. Blande JD; Turunen K; Holopainen JK Environ Pollut; 2009 Jan; 157(1):174-80. PubMed ID: 18775595 [TBL] [Abstract][Full Text] [Related]
12. Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings. Tiiva P; Häikiö E; Kasurinen A Tree Physiol; 2018 Oct; 38(10):1461-1475. PubMed ID: 29648619 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Blanch JS; Peñuelas J; Llusià J Physiol Plant; 2007 Oct; 131(2):211-25. PubMed ID: 18251893 [TBL] [Abstract][Full Text] [Related]
15. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Alessio GA; Peñuelas J; De Lillis M; Llusià J Plant Biol (Stuttg); 2008 Jan; 10(1):123-8. PubMed ID: 18211552 [TBL] [Abstract][Full Text] [Related]
16. Resin acids as inducible chemical defences of pine seedlings against chewing insects. López-Goldar X; Lundborg L; Borg-Karlson AK; Zas R; Sampedro L PLoS One; 2020; 15(5):e0232692. PubMed ID: 32357193 [TBL] [Abstract][Full Text] [Related]
17. Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Rapparini F; Llusià J; Peñuelas J Plant Biol (Stuttg); 2008 Jan; 10(1):108-22. PubMed ID: 18211551 [TBL] [Abstract][Full Text] [Related]
18. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth. Moreaux V; Lamaud E; Bosc A; Bonnefond JM; Medlyn BE; Loustau D Tree Physiol; 2011 Sep; 31(9):903-21. PubMed ID: 21724584 [TBL] [Abstract][Full Text] [Related]
19. Variability of the needle essential oils of Pinus peuce from different populations in Montenegro and Serbia. Nikolić B; Ristić M; Bojović S; Marin PD Chem Biodivers; 2008 Jul; 5(7):1377-88. PubMed ID: 18649304 [TBL] [Abstract][Full Text] [Related]
20. The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles. Berasategui A; Axelsson K; Nordlander G; Schmidt A; Borg-Karlson AK; Gershenzon J; Terenius O; Kaltenpoth M Mol Ecol; 2016 Aug; 25(16):4014-31. PubMed ID: 27199034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]