These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21973014)

  • 1. Fundamental reaction pathway and free energy profile for hydrolysis of intracellular second messenger adenosine 3',5'-cyclic monophosphate (cAMP) catalyzed by phosphodiesterase-4.
    Chen X; Zhao X; Xiong Y; Liu J; Zhan CG
    J Phys Chem B; 2011 Oct; 115(42):12208-19. PubMed ID: 21973014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the phosphodiesterase mechanism from combined QM/MM free energy simulations.
    Wong KY; Gao J
    FEBS J; 2011 Jul; 278(14):2579-95. PubMed ID: 21595828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental reaction mechanism and free energy profile for (-)-cocaine hydrolysis catalyzed by cocaine esterase.
    Liu J; Hamza A; Zhan CG
    J Am Chem Soc; 2009 Aug; 131(33):11964-75. PubMed ID: 19642701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction pathway and free energy profiles for butyrylcholinesterase-catalyzed hydrolysis of acetylthiocholine.
    Chen X; Fang L; Liu J; Zhan CG
    Biochemistry; 2012 Feb; 51(6):1297-305. PubMed ID: 22304234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a catalytic ligand bridging metal ions in phosphodiesterases 4 and 5 by molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations.
    Xiong Y; Lu HT; Li Y; Yang GF; Zhan CG
    Biophys J; 2006 Sep; 91(5):1858-67. PubMed ID: 16912214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of acetylcholine.
    Chen X; Fang L; Liu J; Zhan CG
    J Phys Chem B; 2011 Feb; 115(5):1315-22. PubMed ID: 21175195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction pathway and free energy profile for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide.
    Wei D; Huang X; Liu J; Tang M; Zhan CG
    Biochemistry; 2013 Jul; 52(30):5145-54. PubMed ID: 23862626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study.
    Yao Y; Li ZS
    Org Biomol Chem; 2012 Sep; 10(35):7037-44. PubMed ID: 22847490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction Pathway and Free Energy Profile for Cocaine Hydrolase-Catalyzed Hydrolysis of (-)-Cocaine.
    Liu J; Zhan CG
    J Chem Theory Comput; 2012 Apr; 8(4):1426-1435. PubMed ID: 23066354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction pathways and free energy profiles for cholinesterase-catalyzed hydrolysis of 6-monoacetylmorphine.
    Qiao Y; Han K; Zhan CG
    Org Biomol Chem; 2014 Apr; 12(14):2214-27. PubMed ID: 24595354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction Pathway for Cocaine Hydrolase-Catalyzed Hydrolysis of (+)-Cocaine.
    Yao Y; Liu J; Zheng F; Zhan CG
    Theor Chem Acc; 2016 Jan; 135(1):. PubMed ID: 28250715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of heroin.
    Qiao Y; Han K; Zhan CG
    Biochemistry; 2013 Sep; 52(37):6467-79. PubMed ID: 23992153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of AMP-bound PDE4 suggests a mechanism for phosphodiesterase catalysis.
    Huai Q; Colicelli J; Ke H
    Biochemistry; 2003 Nov; 42(45):13220-6. PubMed ID: 14609333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of proton wires in the enzyme active site suggests a mechanism of c-di-GMP hydrolysis by the EAL domain phosphodiesterases.
    Grigorenko BL; Knyazeva MA; Nemukhin AV
    Proteins; 2016 Nov; 84(11):1670-1680. PubMed ID: 27479508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of cyclic nucleotide hydrolysis in the phosphodiesterase catalytic site.
    Salter EA; Wierzbicki A
    J Phys Chem B; 2007 May; 111(17):4547-52. PubMed ID: 17425352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis.
    Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D
    Cell Signal; 2001 Mar; 13(3):159-67. PubMed ID: 11282454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases.
    Leroy J; Abi-Gerges A; Nikolaev VO; Richter W; Lechêne P; Mazet JL; Conti M; Fischmeister R; Vandecasteele G
    Circ Res; 2008 May; 102(9):1091-100. PubMed ID: 18369156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias.
    Molina CE; Leroy J; Richter W; Xie M; Scheitrum C; Lee IO; Maack C; Rucker-Martin C; Donzeau-Gouge P; Verde I; Llach A; Hove-Madsen L; Conti M; Vandecasteele G; Fischmeister R
    J Am Coll Cardiol; 2012 Jun; 59(24):2182-90. PubMed ID: 22676938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanisms of action of cAMP. A quantum chemical study.
    van Ool PJ; Buck HM
    Eur J Biochem; 1982 Jan; 121(2):329-34. PubMed ID: 6277625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDE4 Phosphodiesterases in Cardiovascular Diseases: Key Pathophysiological Players and Potential Therapeutic Targets.
    Puertas-Umbert L; Alonso J; Hove-Madsen L; Martínez-González J; Rodríguez C
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.