These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21973014)

  • 41. Dissecting the cofactor-dependent and independent bindings of PDE4 inhibitors.
    Liu S; Laliberté F; Bobechko B; Bartlett A; Lario P; Gorseth E; Van Hamme J; Gresser MJ; Huang Z
    Biochemistry; 2001 Aug; 40(34):10179-86. PubMed ID: 11513595
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional plasticity of cyclic AMP hydrolysis in rat adenohypophysial corticotroph cells.
    Ang KL; Antoni FA
    Cell Signal; 2002 May; 14(5):445-52. PubMed ID: 11882389
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual specificity and novel structural folding of yeast phosphodiesterase-1 for hydrolysis of second messengers cyclic adenosine and guanosine 3',5'-monophosphate.
    Tian Y; Cui W; Huang M; Robinson H; Wan Y; Wang Y; Ke H
    Biochemistry; 2014 Aug; 53(30):4938-45. PubMed ID: 25050706
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative studies of the catalytic mechanisms of two chorismatases: CH-fkbo and CH-Hyg5.
    Dong L; Liu Y
    Proteins; 2017 Jun; 85(6):1146-1158. PubMed ID: 28263400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Peptide hydrolysis catalyzed by matrix metalloproteinase 2: a computational study.
    Díaz N; Suárez D
    J Phys Chem B; 2008 Jul; 112(28):8412-24. PubMed ID: 18570467
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substrate specificity of cyclic nucleotide phosphodiesterase from beef heart and from Dictyostelium discoideum.
    Van Haastert PJ; Dijkgraaf PA; Konijn TM; Abbad EG; Petridis G; Jastorff B
    Eur J Biochem; 1983 Apr; 131(3):659-66. PubMed ID: 6301815
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reaction pathway and free-energy barrier for reactivation of dimethylphosphoryl-inhibited human acetylcholinesterase.
    Liu J; Zhang Y; Zhan CG
    J Phys Chem B; 2009 Dec; 113(50):16226-36. PubMed ID: 19924840
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of cyclic AMP in rat pulmonary microvascular endothelial cells by rolipram-sensitive cyclic AMP phosphodiesterase (PDE4).
    Thompson WJ; Ashikaga T; Kelly JJ; Liu L; Zhu B; Vemavarapu L; Strada SJ
    Biochem Pharmacol; 2002 Feb; 63(4):797-807. PubMed ID: 11992650
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reaction profiles of the interaction between sarin and acetylcholinesterase and the S203C mutant: model nucleophiles and QM/MM potential energy surfaces.
    Beck JM; Hadad CM
    Chem Biol Interact; 2010 Sep; 187(1-3):220-4. PubMed ID: 20156428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cyclic nucleotide phosphodiesterases in human spermatozoa and seminal fluid: Presence of an active PDE10A in human spermatozoa.
    Maréchal L; Guillemette C; Goupil S; Blondin P; Leclerc P; Richard FJ
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):147-156. PubMed ID: 27836756
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fundamental reaction pathway and free energy profile of proteasome inhibition by syringolin A (SylA).
    Wei D; Tang M; Zhan CG
    Org Biomol Chem; 2015 Jun; 13(24):6857-65. PubMed ID: 26018983
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New Delhi metallo-β-lactamase I: substrate binding and catalytic mechanism.
    Zheng M; Xu D
    J Phys Chem B; 2013 Oct; 117(39):11596-607. PubMed ID: 24025144
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphodiesterase inhibitors in airways disease.
    Fan Chung K
    Eur J Pharmacol; 2006 Mar; 533(1-3):110-7. PubMed ID: 16458289
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram.
    Xu RX; Rocque WJ; Lambert MH; Vanderwall DE; Luther MA; Nolte RT
    J Mol Biol; 2004 Mar; 337(2):355-65. PubMed ID: 15003452
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ab initio QM/MM free-energy studies of arginine deiminase catalysis: the protonation state of the Cys nucleophile.
    Ke Z; Guo H; Xie D; Wang S; Zhang Y
    J Phys Chem B; 2011 Apr; 115(13):3725-33. PubMed ID: 21395290
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphodiesterase 4 in macrophages: relationship between cAMP accumulation, suppression of cAMP hydrolysis and inhibition of [3H]R-(-)-rolipram binding by selective inhibitors.
    Kelly JJ; Barnes PJ; Giembycz MA
    Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):425-36. PubMed ID: 8809029
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PET measurements of cAMP-mediated phosphodiesterase-4 with (R)-[11C]rolipram.
    Kenk M; Thomas A; Lortie M; Dekemp R; Beanlands RS; Dasilva JN
    Curr Radiopharm; 2011 Jan; 4(1):44-58. PubMed ID: 22191614
    [TBL] [Abstract][Full Text] [Related]  

  • 58. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily.
    Hou G; Cui Q
    J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Concerted regulation of cGMP and cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II.
    Mokni W; Keravis T; Etienne-Selloum N; Walter A; Kane MO; Schini-Kerth VB; Lugnier C
    PLoS One; 2010 Dec; 5(12):e14227. PubMed ID: 21151982
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Revisiting bacterial cyclic nucleotide phosphodiesterases: cyclic AMP hydrolysis and beyond.
    Matange N
    FEMS Microbiol Lett; 2015 Nov; 362(22):. PubMed ID: 26424768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.