These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 21973082)

  • 21. How Computational Modeling can Help to Predict Gas Transfer in Artificial Lungs Early in the Design Process.
    Kaesler A; Rosen M; Schlanstein PC; Wagner G; Groß-Hardt S; Schmitz-Rode T; Steinseifer U; Arens J
    ASAIO J; 2020 Jun; 66(6):683-690. PubMed ID: 31789656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Modeling of Oxygen Transfer in Artificial Lungs.
    Kaesler A; Rosen M; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2018 Aug; 42(8):786-799. PubMed ID: 30043394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Computational Model of Heat Loss and Water Condensation on the Gas-Side of Blood Oxygenators.
    Gómez Bardón R; Dubini G; Pennati G
    Artif Organs; 2018 Nov; 42(11):E380-E390. PubMed ID: 30155896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a new silicone membrane oxygenator for ECMO.
    Nakata K; Maeda T; Murabayashi S; Yoshikawa M; Takano T; Iwasaki A; Nonaka K; Linneweber J; Kawahito S; Glueck J; Sato K; Kuwana J; Nosé Y
    Ann Thorac Cardiovasc Surg; 2000 Dec; 6(6):373-7. PubMed ID: 11173351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a new hollow fiber silicone membrane oxygenator for ECMO: the recent progress.
    Kawahito S; Motomura T; Glueck J; Nosé Y
    Ann Thorac Cardiovasc Surg; 2002 Oct; 8(5):268-74. PubMed ID: 12472408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A numerical performance assessment of a commercial cardiopulmonary by-pass blood heat exchanger.
    Consolo F; Fiore GB; Pelosi A; Reggiani S; Redaelli A
    Med Eng Phys; 2015 Jun; 37(6):584-92. PubMed ID: 25890509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemodynamic Assessment of Hollow-Fiber Membrane Oxygenators Using Computational Fluid Dynamics in Heterogeneous Membrane Models.
    Dipresa D; Kalozoumis P; Pflaum M; Peredo A; Wiegmann B; Haverich A; Korossis S
    J Biomech Eng; 2021 May; 143(5):. PubMed ID: 33462588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling flow effects on thrombotic deposition in a membrane oxygenator.
    Gartner MJ; Wilhelm CR; Gage KL; Fabrizio MC; Wagner WR
    Artif Organs; 2000 Jan; 24(1):29-36. PubMed ID: 10677154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mathematical model to predict CO2 removal in hollow fiber membrane oxygenators.
    Svitek RG; Federspiel WJ
    Ann Biomed Eng; 2008 Jun; 36(6):992-1003. PubMed ID: 18347984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.
    Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB
    Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gas exchange efficiency of an oxygenator with integrated pulsatile displacement blood pump for neonatal patients.
    Schlanstein PC; Borchardt R; Mager I; Schmitz-Rode T; Steinseifer U; Arens J
    Int J Artif Organs; 2014 Jan; 37(1):88-92. PubMed ID: 24634337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: computational and experimental studies.
    Zierenberg JR; Fujioka H; Cook KE; Grotberg JB
    J Biomech Eng; 2008 Jun; 130(3):031019. PubMed ID: 18532868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Model-Based Design and Optimization of Blood Oxygenators.
    He G; Zhang T; Zhang J; Griffith BP; Wu ZJ
    J Med Device; 2020 Dec; 14(4):041001. PubMed ID: 32983315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of the oxygenator: past, present, and future.
    Iwahashi H; Yuri K; Nosé Y
    J Artif Organs; 2004; 7(3):111-20. PubMed ID: 15558331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.
    Zhu L; Zhang X; Yao Z
    Artif Organs; 2010 Mar; 34(3):185-92. PubMed ID: 20447042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of hemodynamic features and thrombosis risk of membrane oxygenators with different structures: A numerical study.
    Fu X; Su Z; Wang Y; Sun A; Wang L; Deng X; Chen Z; Fan Y
    Comput Biol Med; 2023 Jun; 159():106907. PubMed ID: 37075599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical modeling of pulsatile blood flow through a mini-oxygenator in artificial lungs.
    Tang TQ; Hsu SY; Dahiya A; Soh CH; Lin KC
    Comput Methods Programs Biomed; 2021 Sep; 208():106241. PubMed ID: 34247118
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flow mixing enhancement from balloon pulsations in an intravenous oxygenator.
    Guzmán AM; Escobar RA; Amon CH
    J Biomech Eng; 2005 Jun; 127(3):400-15. PubMed ID: 16060347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational modeling for prediction of the shear stress of three-dimensional isotropic and aligned fiber networks.
    Park S
    Comput Methods Programs Biomed; 2017 Sep; 148():91-98. PubMed ID: 28774442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Design and laboratory manufacture of "SUU-Type I" extra-luminal flow hollow fibre membrane oxygenator with microporous polypropylene].
    Tan X; Wang J; Wang L; Pei J; Chen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1998 Jun; 15(2):136-41. PubMed ID: 12548900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.