These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 21973082)

  • 41. Computed tomography angiography as an adjunct to computational fluid dynamics for prediction of oxygenator thrombus formation.
    Conway RG; Zhang J; Jeudy J; Evans C; Li T; Wu ZJ; Griffith BP
    Perfusion; 2021 Apr; 36(3):285-292. PubMed ID: 32723149
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development and evaluation of a variable, miniaturized oxygenator for various test methods.
    Arens J; Schraven L; Kaesler A; Flege C; Schmitz-Rode T; Rossaint R; Steinseifer U; Kopp R
    Artif Organs; 2023 Apr; 47(4):695-704. PubMed ID: 36420613
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computational study of the blood flow in three types of 3D hollow fiber membrane bundles.
    Zhang J; Chen X; Ding J; Fraser KH; Taskin ME; Griffith BP; Wu ZJ
    J Biomech Eng; 2013 Dec; 135(12):121009. PubMed ID: 24141394
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of a mathematical model to predict oxygen transfer rates in hollow fiber membrane oxygenators.
    Vaslef SN; Mockros LF; Anderson RW; Leonard RJ
    ASAIO J; 1994; 40(4):990-6. PubMed ID: 7858338
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flow modeling in a novel non-perfusion conical bioreactor.
    Singh H; Ang ES; Lim TT; Hutmacher DW
    Biotechnol Bioeng; 2007 Aug; 97(5):1291-9. PubMed ID: 17216661
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A strain-based flow-induced hemolysis prediction model calibrated by in vitro erythrocyte deformation measurements.
    Chen Y; Sharp MK
    Artif Organs; 2011 Feb; 35(2):145-56. PubMed ID: 21091515
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional and biocompatibility performances of an integrated Maglev pump-oxygenator.
    Zhang T; Cheng G; Koert A; Zhang J; Gellman B; Yankey GK; Satpute A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2009 Jan; 33(1):36-45. PubMed ID: 19178439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.
    Ding J; Wang X; Zhou XF; Ren NQ; Guo WQ
    Bioresour Technol; 2010 Sep; 101(18):7016-24. PubMed ID: 20427177
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design optimization of an axial blood pump with computational fluid dynamics.
    Zhang Y; Zhan Z; Gui XM; Sun HS; Zhang H; Zheng Z; Zhou JY; Zhu XD; Li GR; Hu SS; Jin DH
    ASAIO J; 2008; 54(2):150-5. PubMed ID: 18356647
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a novel polyimide hollow fiber for an intravascular oxygenator.
    Kawakami H; Mori Y; Takagi J; Nagaoka S; Kanamori T; Shinbo T; Kubota S
    ASAIO J; 1997; 43(5):M490-4. PubMed ID: 9360091
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional computational model of a blood oxygenator reconstructed from micro-CT scans.
    D'Onofrio C; van Loon R; Rolland S; Johnston R; North L; Brown S; Phillips R; Sienz J
    Med Eng Phys; 2017 Sep; 47():190-197. PubMed ID: 28716304
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a radial ventricular assist device using numerical predictions and experimental haemolysis.
    Carswell D; Hilton A; Chan C; McBride D; Croft N; Slone A; Cross M; Foster G
    Med Eng Phys; 2013 Aug; 35(8):1197-203. PubMed ID: 23384537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.
    Widmer RP; Ferguson SJ
    J Biomech Eng; 2011 May; 133(5):051007. PubMed ID: 21599098
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Methodology for predicting oxygen transport on an intravenous membrane oxygenator combining computational and analytical models.
    Guzmán AM; Escobar RA; Amon CH
    J Biomech Eng; 2005 Dec; 127(7):1127-40. PubMed ID: 16502655
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space.
    Gupta S; Soellinger M; Boesiger P; Poulikakos D; Kurtcuoglu V
    J Biomech Eng; 2009 Feb; 131(2):021010. PubMed ID: 19102569
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of computational fluid dynamics techniques to blood pumps.
    Sukumar R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The use of computational fluid dynamic models for the optimization of cell seeding processes.
    Adebiyi AA; Taslim ME; Crawford KD
    Biomaterials; 2011 Dec; 32(34):8753-70. PubMed ID: 21885116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of oxygenator selection on hemodynamic energy indicators under pulsatile and nonpulsatile flow in a neonatal extracorporeal life support model.
    Vasavada R; Khan S; Qiu F; Kunselman A; Undar A
    Artif Organs; 2011 Jun; 35(6):E101-7. PubMed ID: 21623841
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models.
    Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.