These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21973178)

  • 1. Conostegia xalapensis (Melastomataceae): an aluminum accumulator plant.
    González-Santana IH; Márquez-Guzmán J; Cram-Heydrich S; Cruz-Ortega R
    Physiol Plant; 2012 Feb; 144(2):134-45. PubMed ID: 21973178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of aluminium and nutrient concentrations in mistletoes on aluminium-accumulating and non-accumulating hosts.
    Scalon MC; Haridasan M; Franco AC
    Plant Biol (Stuttg); 2013 Sep; 15(5):851-7. PubMed ID: 23452024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Al-Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils.
    Watanabe T; Jansen S; Osaki M
    Plant Cell Environ; 2006 Dec; 29(12):2124-32. PubMed ID: 17081246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of organic acids in aluminum accumulation and plant growth in Melastoma malabathricum.
    Watanabe T; Osaki M
    Tree Physiol; 2002 Aug; 22(11):785-92. PubMed ID: 12184982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminum.
    Naik D; Smith E; Cumming JR
    Tree Physiol; 2009 Mar; 29(3):423-36. PubMed ID: 19203961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of aluminum on nitrate reductase and photosynthetic activities in Quercus serrata seedlings.
    Tomioka R; Uchida A; Takenaka C; Tezuka T
    Environ Sci; 2007; 14(3):157-65. PubMed ID: 17622220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controls on foliar aluminium accumulation among populations of the tropical shrub Melastoma malabathricum L. (Melastomataceae).
    Khairil M; Burslem DFRP
    Tree Physiol; 2018 Nov; 38(11):1752-1760. PubMed ID: 30137635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proportion of phospholipids in the plasma membrane is an important factor in Al tolerance.
    Maejima E; Watanabe T
    Plant Signal Behav; 2014; 9(7):e29277. PubMed ID: 25763499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal uptake and distribution in cultured seedlings of Nerium oleander L. (Apocynaceae) from the Río Tinto (Huelva, Spain).
    Franco A; Rufo L; Zuluaga J; de la Fuente V
    Biol Trace Elem Res; 2013 Oct; 155(1):82-92. PubMed ID: 23892697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum-dependent dynamics of ion transport in Arabidopsis: specificity of low pH and aluminum responses.
    Bose J; Babourina O; Shabala S; Rengel Z
    Physiol Plant; 2010 Aug; 139(4):401-12. PubMed ID: 20444195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of constitutive characteristics of lipids and phenolics in roots of tree species in Myrtales to aluminum tolerance.
    Maejima E; Osaki M; Wagatsuma T; Watanabe T
    Physiol Plant; 2017 May; 160(1):11-20. PubMed ID: 27800617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil aluminium uptake and accumulation by Paspalum notatum.
    Huang J; Xia H; Li Z; Xiong Y; Kong G; Huang J
    Waste Manag Res; 2009 Oct; 27(7):668-75. PubMed ID: 19423590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots.
    Wang P; Bi S; Ma L; Han W
    J Agric Food Chem; 2006 Dec; 54(26):10033-9. PubMed ID: 17177538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [XPS analysis of tea plant leaf and root surface].
    Fang JY; Wan XC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2196-200. PubMed ID: 19093593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum could be transported via phloem in Camellia oleifera Abel.
    Zeng QL; Chen RF; Zhao XQ; Shen RF; Noguchi A; Shinmachi F; Hasegawa I
    Tree Physiol; 2013 Jan; 33(1):96-105. PubMed ID: 23192975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants.
    Hajiboland R; Barceló J; Poschenrieder C; Tolrà R
    J Inorg Biochem; 2013 Nov; 128():183-7. PubMed ID: 23910825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile.
    Díaz O; Tapia Y; Pastene R; Montes S; Núñez N; Vélez D; Montoro R
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):666-9. PubMed ID: 21484519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External aluminium supply regulates photosynthesis and carbon partitioning in the Al-accumulating tropical shrub Melastoma malabathricum.
    Mahmud K; Weitz H; H Kritzler U; Burslem DFRP
    PLoS One; 2024; 19(3):e0297686. PubMed ID: 38507439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of initial climatic conditions on growth and accumulation of fluoride and nitrogen in leaves of two tropical tree species exposed to industrial air pollution.
    Furlan CM; Domingos M; Salatino A
    Sci Total Environ; 2007 Mar; 374(2-3):399-407. PubMed ID: 17289116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.).
    Tani FH; Barrington S
    Environ Pollut; 2005 Dec; 138(3):548-58. PubMed ID: 16043272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.