These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21974534)

  • 1. Nucleation barriers in tetrahedral liquids spanning glassy and crystallizing regimes.
    Saika-Voivod I; Romano F; Sciortino F
    J Chem Phys; 2011 Sep; 135(12):124506. PubMed ID: 21974534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization of tetrahedral patchy particles in silico.
    Romano F; Sanz E; Sciortino F
    J Chem Phys; 2011 May; 134(17):174502. PubMed ID: 21548694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile self-assembly of colloidal diamond from tetrahedral patchy particles via ring selection.
    Neophytou A; Chakrabarti D; Sciortino F
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34819372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of clathrates from tetrahedral patchy colloids with narrow patches.
    Noya EG; Zubieta I; Pine DJ; Sciortino F
    J Chem Phys; 2019 Sep; 151(9):094502. PubMed ID: 31492076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.
    Noya EG; Vega C; Doye JP; Louis AA
    J Chem Phys; 2010 Jun; 132(23):234511. PubMed ID: 20572725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding tetrahedral liquids through patchy colloids.
    Saika-Voivod I; Smallenburg F; Sciortino F
    J Chem Phys; 2013 Dec; 139(23):234901. PubMed ID: 24359387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic rougheninglike transition with finite nucleation barrier.
    Lutsko JF; Basios V; Nicolis G; Kozak JJ; Sleutel M; Maes D
    J Chem Phys; 2010 Jan; 132(3):035102. PubMed ID: 20095752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between the Formation of Colloidal Clathrate and Cubic Diamond Crystals.
    Baran Ł; Tarasewicz D; Rżysko W
    J Phys Chem B; 2024 Jun; 128(23):5792-5801. PubMed ID: 38832806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New metastable form of ice and its role in the homogeneous crystallization of water.
    Russo J; Romano F; Tanaka H
    Nat Mater; 2014 Jul; 13(7):733-9. PubMed ID: 24836734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation of epitaxial nucleation of a crystal on a crystalline surface.
    Mithen JP; Sear RP
    J Chem Phys; 2014 Feb; 140(8):084504. PubMed ID: 24588182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of nucleation of protein crystals on nano-wrinkled surfaces.
    Bommineni PK; Punnathanam SN
    Faraday Discuss; 2016; 186():187-97. PubMed ID: 26762687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of protein crystal nucleation by critical density fluctuations.
    ten Wolde PR; Frenkel D
    Science; 1997 Sep; 277(5334):1975-8. PubMed ID: 9302288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal nucleation of colloidal suspensions under shear.
    Blaak R; Auer S; Frenkel D; Löwen H
    Phys Rev Lett; 2004 Aug; 93(6):068303. PubMed ID: 15323669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal nucleation of colloidal hard dumbbells.
    Ni R; Dijkstra M
    J Chem Phys; 2011 Jan; 134(3):034501. PubMed ID: 21261362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization and aging in hard-sphere glasses.
    Valeriani C; Sanz E; Zaccarelli E; Poon WC; Cates ME; Pusey PN
    J Phys Condens Matter; 2011 May; 23(19):194117. PubMed ID: 21525559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in local crystalline order across the limit of stability leads to cubic-hexagonal stacking in supercooled monatomic (mW) water.
    Pingua N; Apte PA
    J Chem Phys; 2018 Aug; 149(7):074506. PubMed ID: 30134708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembly of Patchy Colloidal Rods into Photonic Crystals Robust to Stacking Faults.
    Neophytou A; Manoharan VN; Chakrabarti D
    ACS Nano; 2021 Feb; 15(2):2668-2678. PubMed ID: 33448214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2010 Jun; 22(23):232102. PubMed ID: 21393759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.