BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

704 related articles for article (PubMed ID: 21974549)

  • 1. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.
    Kushwaha MS
    J Chem Phys; 2011 Sep; 135(12):124704. PubMed ID: 21974549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of electronic properties of coupled quantum dots on wetting layers.
    Betcke MM; Voss H
    Nanotechnology; 2008 Apr; 19(16):165204. PubMed ID: 21825638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical study of exciton energy levels in laterally coupled quantum dots.
    Barticevic Z; Pacheco M; Duque CA; Oliveira LE
    J Phys Condens Matter; 2009 Oct; 21(40):405801. PubMed ID: 21832423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical properties of dielectric thin films including quantum dots.
    Flory F; Chen YJ; Lee CC; Escoubas L; Simon JJ; Torchio P; Le Rouzo J; Vedraine S; Derbal-Habak H; Shupyk I; Didane Y; Ackermann J
    Appl Opt; 2011 Mar; 50(9):C129-34. PubMed ID: 21460927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer.
    Sabaeian M; Khaledi-Nasab A
    Appl Opt; 2012 Jun; 51(18):4176-85. PubMed ID: 22722295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots.
    Duque CA; Porras-Montenegro N; Barticevic Z; Pacheco M; Oliveira LE
    J Phys Condens Matter; 2006 Feb; 18(6):1877-84. PubMed ID: 21697562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling-barrier and non-parabolicity effects on the conduction electron cyclotron effective mass and Landé [Formula: see text] factor in GaAs double quantum wells.
    Darío Perea J; Mejía-Salazar JR; Porras-Montenegro N
    J Phys Condens Matter; 2011 Feb; 23(6):065303. PubMed ID: 21406924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous quantum-confined Stark effects in stacked InAs/GaAs self-assembled quantum dots.
    Sheng W; Leburton JP
    Phys Rev Lett; 2002 Apr; 88(16):167401. PubMed ID: 11955264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dirac electrons in graphene-based quantum wires and quantum dots.
    Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM
    J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy spectrum and density of states for a graphene quantum dot in a magnetic field.
    Horing NJ; Liu SY
    J Phys Condens Matter; 2010 Jan; 22(2):025502. PubMed ID: 21386256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum interferential Y-junction switch.
    Tkachenko OA; Tkachenko VA; Kvon ZD; Aseev AL; Portal JC
    Nanotechnology; 2012 Mar; 23(9):095202. PubMed ID: 22327287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots.
    Yu H; Li J; Loomis RA; Wang LW; Buhro WE
    Nat Mater; 2003 Aug; 2(8):517-20. PubMed ID: 12872161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots.
    Sun J; Wang LW; Buhro WE
    J Am Chem Soc; 2008 Jun; 130(25):7997-8005. PubMed ID: 18507463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum confinement and magnetic-field effects on the electron g factor in GaAs-(Ga, Al)As cylindrical quantum dots.
    Mejía-Salazar JR; Porras-Montenegro N; Oliveira LE
    J Phys Condens Matter; 2009 Nov; 21(45):455302. PubMed ID: 21694007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum phase transition in a single-molecule quantum dot.
    Roch N; Florens S; Bouchiat V; Wernsdorfer W; Balestro F
    Nature; 2008 May; 453(7195):633-7. PubMed ID: 18509439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning of polarization sensitivity in closely stacked trilayer InAs/GaAs quantum dots induced by overgrowth dynamics.
    Tasco V; Usman M; De Giorgi M; Passaseo A
    Nanotechnology; 2014 Feb; 25(5):055207. PubMed ID: 24407042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation of the photoluminescence spectrum of InAs/GaAs heterostructures grown by ion-beam deposition.
    Pashchenko AS; Lunin LS; Danilina EM; Chebotarev SN
    Beilstein J Nanotechnol; 2018; 9():2794-2801. PubMed ID: 30498652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma excitations in graphene: their spectral intensity and temperature dependence in magnetic field.
    Wu JY; Chen SC; Roslyak O; Gumbs G; Lin MF
    ACS Nano; 2011 Feb; 5(2):1026-32. PubMed ID: 21204567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.