These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21974617)

  • 1. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments.
    Wang G; He J; Zhao J; Tan F; Sun C; Mo J; Xong X; Wu G
    Rev Sci Instrum; 2011 Sep; 82(9):095105. PubMed ID: 21974617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shock experiments and numerical simulations on low energy portable electrically exploding foil accelerators.
    Saxena AK; Kaushik TC; Gupta SC
    Rev Sci Instrum; 2010 Mar; 81(3):033508. PubMed ID: 20370178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments.
    Zhang X; Wang G; Zhao J; Tan F; Luo B; Sun C
    Rev Sci Instrum; 2014 May; 85(5):055110. PubMed ID: 24880418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading.
    Wang G; Luo B; Zhang X; Zhao J; Sun C; Tan F; Chong T; Mo J; Wu G; Tao Y
    Rev Sci Instrum; 2013 Jan; 84(1):015117. PubMed ID: 23387705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber-coupled laser-driven flyer plates system.
    Zhao XH; Zhao X; Shan GC; Gao Y
    Rev Sci Instrum; 2011 Apr; 82(4):043904. PubMed ID: 21529022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 200 kJ electrical gun for hypervelocity launch.
    Luo B; Mo J; Xu C; Chen X; Shui R
    Rev Sci Instrum; 2021 Dec; 92(12):123905. PubMed ID: 34972420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments.
    Wang G; Sun C; Tan F; Zhao J; Zhang N; Liu C; Mo J; Wang G; Wang X
    Rev Sci Instrum; 2008 May; 79(5):053904. PubMed ID: 18513076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High strain rate metalworking with vaporizing foil actuator: control of flyer velocity by varying input energy and foil thickness.
    Vivek A; Hansen SR; Daehn GS
    Rev Sci Instrum; 2014 Jul; 85(7):075101. PubMed ID: 25085167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma-accelerated flyer-plates for equation of state studies.
    Fratanduono DE; Smith RF; Boehly TR; Eggert JH; Braun DG; Collins GW
    Rev Sci Instrum; 2012 Jul; 83(7):073504. PubMed ID: 22852692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic simulation of hypervelocity generation by multidimensional graded impactors: Planarity enhancement study.
    Guo C; Li L; Chen H; Zhang R; Bai J; Shen Q; Zhang L; Luo G
    Heliyon; 2023 Mar; 9(3):e13704. PubMed ID: 36915499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simplified laser-driven flyer plates for shock compression science.
    Brown KE; Shaw WL; Zheng X; Dlott DD
    Rev Sci Instrum; 2012 Oct; 83(10):103901. PubMed ID: 23126776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Note: Printed circuit board based electrically triggered compact rail gap switch.
    Saxena AK; Kaushik TC; Goswami MP; Gupta SC
    Rev Sci Instrum; 2010 May; 81(5):056106. PubMed ID: 20515183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-energy flat-top beams for laser launching using a Gaussian mirror.
    Fujiwara H; Brown KE; Dlott DD
    Appl Opt; 2010 Jul; 49(19):3723-31. PubMed ID: 20648138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-driven flyer plates for shock compression science: launch and target impact probed by photon Doppler velocimetry.
    Curtis AD; Banishev AA; Shaw WL; Dlott DD
    Rev Sci Instrum; 2014 Apr; 85(4):043908. PubMed ID: 24784627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments.
    Wang G; Chen X; Cai J; Zhang X; Chong T; Luo B; Zhao J; Sun C; Tan F; Liu C; Wu G
    Rev Sci Instrum; 2016 Jun; 87(6):065110. PubMed ID: 27370784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On high explosive launching of projectiles for shock physics experiments.
    Swift DC; Forest CA; Clark DA; Buttler WT; Marr-Lyon M; Rightley P
    Rev Sci Instrum; 2007 Jun; 78(6):063904. PubMed ID: 17614623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Note: Accuracy of velocity correction for impact of a laser-accelerated miniature flyer with lithium fluoride shock-compressed along the [100] axis.
    Wakabayashi K; Matsumura T; Nakayama Y; Koshi M
    Rev Sci Instrum; 2011 Feb; 82(2):026112. PubMed ID: 21361651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect ignition of energetic materials with laser-driven flyer plates.
    Dean SW; De Lucia FC; Gottfried JL
    Appl Opt; 2017 Jan; 56(3):B134-B141. PubMed ID: 28157876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamical calculation of metal heating in nanosecond exploding wire and foil experiments.
    Sarkisov GS; Rosenthal SE; Struve KW
    Rev Sci Instrum; 2007 Apr; 78(4):043505. PubMed ID: 17477658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Performance Characterization of Exploding Foil Initiator Based on ODPA-ODA Polyimide Flyer.
    Wu Z; Lei F; Zhan Z; Luo J; Niu G; Li Z; Yi T; Chen S; Yang B; Fu Q; Zhang Z
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.