These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 21974640)

  • 1. Lyapunov exponent diagrams of a 4-dimensional Chua system.
    Stegemann C; Albuquerque HA; Rubinger RM; Rech PC
    Chaos; 2011 Sep; 21(3):033105. PubMed ID: 21974640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using recurrences to characterize the hyperchaos-chaos transition.
    Souza EG; Viana RL; Lopes SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066206. PubMed ID: 19256924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics, bifurcations and chaos in coupled lasers.
    Lindberg AM; Fordell T; Valling S
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):427-35. PubMed ID: 17681913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application.
    Liu HF; Yang YZ; Dai ZH; Yu ZH
    Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple period-doubling bifurcation route to chaos in periodically pulsed Murali-Lakshmanan-Chua circuit-controlling and synchronization of chaos.
    Parthasarathy S; Manikandakumar K
    Chaos; 2007 Dec; 17(4):043120. PubMed ID: 18163784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical models for chronotherapy: periodic perturbations in hyperchaos.
    Betancourt-Mar JA; Méndez-Guerrero VA; Hernández-Rodríguez C; Nieto-Villar JM
    Math Biosci Eng; 2010 Jul; 7(3):553-60. PubMed ID: 20578785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical origin for the occurrence of asynchronous hyperchaos and chaos via blowout bifurcations.
    Kim SY; Lim W; Ott E; Hunt B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066203. PubMed ID: 14754293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lagrangian coherent structures at the onset of hyperchaos in the two-dimensional Navier-Stokes equations.
    Miranda RA; Rempel EL; Chian AC; Seehafer N; Toledo BA; Muñoz PR
    Chaos; 2013 Sep; 23(3):033107. PubMed ID: 24089943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organized distribution of periodicity and chaos in an electrochemical oscillator.
    Nascimento MA; Gallas JA; Varela H
    Phys Chem Chem Phys; 2011 Jan; 13(2):441-6. PubMed ID: 20944854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaos-hyperchaos transition.
    Kapitaniak T; Maistrenko Y; Popovych S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1972-6. PubMed ID: 11088661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system.
    Wang R; Gao JY
    Chaos; 2005 Sep; 15(3):33110. PubMed ID: 16252984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lyapunov exponents from unstable periodic orbits.
    Franzosi R; Poggi P; Cerruti-Sola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperlabyrinth chaos: from chaotic walks to spatiotemporal chaos.
    Chlouverakis KE; Sprott JC
    Chaos; 2007 Jun; 17(2):023110. PubMed ID: 17614664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation dimension and the largest Lyapunov exponent characterization of RR interval.
    Lu HW; Chen YZ
    Space Med Med Eng (Beijing); 2003 Dec; 16(6):396-9. PubMed ID: 15008187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillations, period doublings, and chaos in CO oxidation and catalytic mufflers.
    Marek M; Schejbal M; Kocí P; Nevoral V; Kubícek M; Hadac O; Schreiber I
    Chaos; 2006 Sep; 16(3):037107. PubMed ID: 17014241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaotic dynamics of one-dimensional systems with periodic boundary conditions.
    Kumar P; Miller BN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062918. PubMed ID: 25615175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Improved Calculation Formula of the Extended Entropic Chaos Degree and Its Application to Two-Dimensional Chaotic Maps.
    Inoue K
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shrimp-shape domains in a dissipative kicked rotator.
    Oliveira DF; Robnik M; Leonel ED
    Chaos; 2011 Dec; 21(4):043122. PubMed ID: 22225359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying spatiotemporal chaos in Rayleigh-Bénard convection.
    Karimi A; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046201. PubMed ID: 22680550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.