BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 21974862)

  • 1. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment.
    Ma X; Wu Y; Jin S; Tian Y; Zhang X; Zhao Y; Yu L; Liang XJ
    ACS Nano; 2011 Nov; 5(11):8629-39. PubMed ID: 21974862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages.
    Wan B; Wang ZX; Lv QY; Dong PX; Zhao LX; Yang Y; Guo LH
    Toxicol Lett; 2013 Aug; 221(2):118-27. PubMed ID: 23769962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms: Lysosome Impairment, Mitochondrial Damage, and ER Stress.
    Zhang X; Zhang H; Liang X; Zhang J; Tao W; Zhu X; Chang D; Zeng X; Liu G; Mei L
    Mol Pharm; 2016 Jul; 13(7):2578-87. PubMed ID: 27287467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions.
    Fengsrud M; Roos N; Berg T; Liou W; Slot JW; Seglen PO
    Exp Cell Res; 1995 Dec; 221(2):504-19. PubMed ID: 7493651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size.
    Oh E; Delehanty JB; Sapsford KE; Susumu K; Goswami R; Blanco-Canosa JB; Dawson PE; Granek J; Shoff M; Zhang Q; Goering PL; Huston A; Medintz IL
    ACS Nano; 2011 Aug; 5(8):6434-48. PubMed ID: 21774456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells.
    Hao X; Wu J; Shan Y; Cai M; Shang X; Jiang J; Wang H
    J Phys Condens Matter; 2012 Apr; 24(16):164207. PubMed ID: 22466161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiphoton-absorption-induced-luminescence (MAIL) imaging of tumor-targeted gold nanoparticles.
    Dowling MB; Li L; Park J; Kumi G; Nan A; Ghandehari H; Fourkas JT; DeShong P
    Bioconjug Chem; 2010 Nov; 21(11):1968-77. PubMed ID: 20964333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-Sensitive Polymeric Nanoparticles with Gold(I) Compound Payloads Synergistically Induce Cancer Cell Death through Modulation of Autophagy.
    Lin YX; Gao YJ; Wang Y; Qiao ZY; Fan G; Qiao SL; Zhang RX; Wang L; Wang H
    Mol Pharm; 2015 Aug; 12(8):2869-78. PubMed ID: 26101892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy and oxidative stress associated with gold nanoparticles.
    Li JJ; Hartono D; Ong CN; Bay BH; Yung LY
    Biomaterials; 2010 Aug; 31(23):5996-6003. PubMed ID: 20466420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time.
    Mironava T; Hadjiargyrou M; Simon M; Jurukovski V; Rafailovich MH
    Nanotoxicology; 2010 Mar; 4(1):120-37. PubMed ID: 20795906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship.
    Lin J; Zhang H; Chen Z; Zheng Y
    ACS Nano; 2010 Sep; 4(9):5421-9. PubMed ID: 20799717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells.
    Liu X; Huang N; Li H; Jin Q; Ji J
    Langmuir; 2013 Jul; 29(29):9138-48. PubMed ID: 23815604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location.
    Lechtman E; Chattopadhyay N; Cai Z; Mashouf S; Reilly R; Pignol JP
    Phys Med Biol; 2011 Aug; 56(15):4631-47. PubMed ID: 21734337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy.
    Mao BH; Tsai JC; Chen CW; Yan SJ; Wang YJ
    Nanotoxicology; 2016 Oct; 10(8):1021-40. PubMed ID: 27240148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species.
    Zhu ZJ; Wang H; Yan B; Zheng H; Jiang Y; Miranda OR; Rotello VM; Xing B; Vachet RW
    Environ Sci Technol; 2012 Nov; 46(22):12391-8. PubMed ID: 23102049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size- and coating-dependent uptake of polymer-coated gold nanoparticles in primary human dermal microvascular endothelial cells.
    Freese C; Gibson MI; Klok HA; Unger RE; Kirkpatrick CJ
    Biomacromolecules; 2012 May; 13(5):1533-43. PubMed ID: 22512620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cation trapping by cellular acidic compartments: beyond the concept of lysosomotropic drugs.
    Marceau F; Bawolak MT; Lodge R; Bouthillier J; Gagné-Henley A; Gaudreault RC; Morissette G
    Toxicol Appl Pharmacol; 2012 Feb; 259(1):1-12. PubMed ID: 22198553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells.
    Zhou J; Hu SE; Tan SH; Cao R; Chen Y; Xia D; Zhu X; Yang XF; Ong CN; Shen HM
    Autophagy; 2012 Mar; 8(3):338-49. PubMed ID: 22302005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophagy monitoring assay: qualitative analysis of MAP LC3-I to II conversion by immunoblot.
    McLeland CB; Rodriguez J; Stern ST
    Methods Mol Biol; 2011; 697():199-206. PubMed ID: 21116969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent endocytosis of single gold nanoparticles.
    Shan Y; Ma S; Nie L; Shang X; Hao X; Tang Z; Wang H
    Chem Commun (Camb); 2011 Jul; 47(28):8091-3. PubMed ID: 21687845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.