BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 21974911)

  • 1. The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation.
    Zhang Q; Brumer H; Ågren H; Tu Y
    Carbohydr Res; 2011 Nov; 346(16):2595-602. PubMed ID: 21974911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The xyloglucan-cellulose assembly at the atomic scale.
    Hanus J; Mazeau K
    Biopolymers; 2006 May; 82(1):59-73. PubMed ID: 16453275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state 13C NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides.
    Bootten TJ; Harris PJ; Melton LD; Newman RH
    Biomacromolecules; 2009 Nov; 10(11):2961-7. PubMed ID: 19817435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process.
    Benselfelt T; Cranston ED; Ondaral S; Johansson E; Brumer H; Rutland MW; Wågberg L
    Biomacromolecules; 2016 Sep; 17(9):2801-11. PubMed ID: 27476615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enthalpic studies of xyloglucan-cellulose interactions.
    Lopez M; Bizot H; Chambat G; Marais MF; Zykwinska A; Ralet MC; Driguez H; Buléon A
    Biomacromolecules; 2010 Jun; 11(6):1417-28. PubMed ID: 20433133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational folding of xyloglucan side chains in aqueous solution from molecular dynamics simulation.
    Umemura M; Yuguchi Y
    Carbohydr Res; 2005 Nov; 340(16):2520-32. PubMed ID: 16169538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of the static and dynamic molecular conformations of xyloglucan. The role of the fucosylated sidechain in surface-specific sidechain folding.
    Levy S; York WS; Stuike-Prill R; Meyer B; Staehelin LA
    Plant J; 1991 Sep; 1(2):195-215. PubMed ID: 1844884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Solubility on the Adsorption of Different Xyloglucan Fractions at Cellulose-Water Interfaces.
    Kishani S; Vilaplana F; Ruda M; Hansson P; Wågberg L
    Biomacromolecules; 2020 Feb; 21(2):772-782. PubMed ID: 31790572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose.
    Hatton FL; Ruda M; Lansalot M; D'Agosto F; Malmström E; Carlmark A
    Biomacromolecules; 2016 Apr; 17(4):1414-24. PubMed ID: 26913868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations.
    Miyamoto H; Umemura M; Aoyagi T; Yamane C; Ueda K; Takahashi K
    Carbohydr Res; 2009 Jun; 344(9):1085-94. PubMed ID: 19375694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering.
    Bodin A; Ahrenstedt L; Fink H; Brumer H; Risberg B; Gatenholm P
    Biomacromolecules; 2007 Dec; 8(12):3697-704. PubMed ID: 18031014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xyloglucan sidechains modulate binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations.
    Levy S; Maclachlan G; Staehelin LA
    Plant J; 1997 Mar; 11(3):373-86. PubMed ID: 9107029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Friction between cellulose surfaces and effect of xyloglucan adsorption.
    Stiernstedt J; Brumer H; Zhou Q; Teeri TT; Rutland MW
    Biomacromolecules; 2006 Jul; 7(7):2147-53. PubMed ID: 16827581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring architecture of xyloglucan cellulose nanocrystal complexes through enzyme susceptibility at different adsorption regimes.
    Dammak A; Quémener B; Bonnin E; Alvarado C; Bouchet B; Villares A; Moreau C; Cathala B
    Biomacromolecules; 2015 Feb; 16(2):589-96. PubMed ID: 25539015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic aspects of the adsorption of xyloglucan onto cellulose nanocrystals.
    Villares A; Moreau C; Dammak A; Capron I; Cathala B
    Soft Matter; 2015 Aug; 11(32):6472-81. PubMed ID: 26179417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general route to xyloglucan-peptide conjugates for the activation of cellulose surfaces.
    Araújo AC; Nakhai A; Ruda M; Slättegård R; Gatenholm P; Brumer H
    Carbohydr Res; 2012 Jun; 354():116-20. PubMed ID: 22541299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation of xyloglucan fragments and their interaction with cellulose.
    Vincken JP; de Keizer A; Beldman G; Voragen AG
    Plant Physiol; 1995 Aug; 108(4):1579-85. PubMed ID: 7659752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-down grafting of xyloglucan to gold monitored by QCM-D and AFM: enzymatic activity and interactions with cellulose.
    Nordgren N; Eklöf J; Zhou Q; Brumer H; Rutland MW
    Biomacromolecules; 2008 Mar; 9(3):942-8. PubMed ID: 18260631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose-hemicellulose interactions - A nanoscale view.
    Khodayari A; Thielemans W; Hirn U; Van Vuure AW; Seveno D
    Carbohydr Polym; 2021 Oct; 270():118364. PubMed ID: 34364609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xyloglucan-cellulose interaction depends on the sidechains and molecular weight of xyloglucan.
    Lima DU; Loh W; Buckeridge MS
    Plant Physiol Biochem; 2004 May; 42(5):389-94. PubMed ID: 15191741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.