BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 21974967)

  • 1. New insights into human minimal change disease: lessons from animal models.
    Chugh SS; Clement LC; Macé C
    Am J Kidney Dis; 2012 Feb; 59(2):284-92. PubMed ID: 21974967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome.
    Clement LC; Avila-Casado C; Macé C; Soria E; Bakker WW; Kersten S; Chugh SS
    Nat Med; 2011 Jan; 17(1):117-22. PubMed ID: 21151138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Idiopathic" minimal change nephrotic syndrome: a podocyte mystery nears the end.
    Chugh SS; Clement LC
    Am J Physiol Renal Physiol; 2023 Dec; 325(6):F685-F694. PubMed ID: 37795536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [ManNAc, a new therapeutic agent to reduce Angptl4-induced proteinuria in MCD].
    Clément L; Macé C
    Med Sci (Paris); 2016; 32(6-7):606-11. PubMed ID: 27406771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiopoietin-Like-4, a Potential Target of Tacrolimus, Predicts Earlier Podocyte Injury in Minimal Change Disease.
    Li JS; Chen X; Peng L; Wei SY; Zhao SL; Diao TT; He YX; Liu F; Wei QJ; Zhang QF; Li B
    PLoS One; 2015; 10(9):e0137049. PubMed ID: 26352670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiopoietin-like-4 and minimal change disease.
    Cara-Fuentes G; Segarra A; Silva-Sanchez C; Wang H; Lanaspa MA; Johnson RJ; Garin EH
    PLoS One; 2017; 12(4):e0176198. PubMed ID: 28441404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [New insight in pathogenesis of podocyte disfunction in minimal change disease].
    Liu S; Chen J
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 Mar; 45(2):214-8. PubMed ID: 27273997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcineurin inhibitors ameliorate PAN-induced podocyte injury through the NFAT-Angptl4 pathway.
    Shen X; Zhang Y; Lin C; Weng C; Wang Y; Feng S; Wang C; Shao X; Lin W; Li B; Wang H; Chen J; Jiang H
    J Pathol; 2020 Nov; 252(3):227-238. PubMed ID: 32686149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filtering new facts about kidney disease.
    Reiser J
    Nat Med; 2011 Jan; 17(1):44-5. PubMed ID: 21217681
    [No Abstract]   [Full Text] [Related]  

  • 10. Therapeutic and antiproteinuric effects of salvianolic acid A in combined with low-dose prednisone in minimal change disease rats: Involvement of PPARγ/Angptl4 and Nrf2/HO-1 pathways.
    Wang X; Qi D; Fu F; Li X; Liu Y; Ji K; Gao Z; Kong L; Yu C; Xie H; Yue G; Zhu H; Liu K; Fan H
    Eur J Pharmacol; 2019 Sep; 858():172342. PubMed ID: 31129156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimal Change Disease.
    Vivarelli M; Massella L; Ruggiero B; Emma F
    Clin J Am Soc Nephrol; 2017 Feb; 12(2):332-345. PubMed ID: 27940460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nephrotic syndrome due to minimal-change disease superimposed on anti-glomerular basement membrane antibody positive glomerulonephritis; a case report.
    Shibata Y; Fukuoka K; Yokota R; Lee H; Sayo H; Ikegaya N; Mori K; Yamamoto J; Isomura A; Nagahama K; Shimoyamada H; Kawakami T; Komagata Y; Kaname S
    BMC Nephrol; 2020 Jul; 21(1):283. PubMed ID: 32680573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome.
    Clement LC; Macé C; Avila-Casado C; Joles JA; Kersten S; Chugh SS
    Nat Med; 2014 Jan; 20(1):37-46. PubMed ID: 24317117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal Change Disease After Elective Surgical Abortion: A Case Report.
    Greenberg S; Jana KR; Janga KC; Kumar K
    Am J Case Rep; 2021 Mar; 22():e930292. PubMed ID: 33771965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural changes of podocyte foot processes during the remission phase of minimal change disease of human kidney.
    Liu XJ; Zhang YM; Wang SX; Liu G
    Nephrology (Carlton); 2014 Jul; 19(7):392-7. PubMed ID: 24690133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexplained severe acute kidney injury with rapid recovery of kidney function 11 months later after the start of high-dose steroid therapy.
    Roncone D; Rovin B; Falk R; Nicely C; Nadasdy T; Parikh S; Hebert LA
    Clin Nephrol; 2014 Aug; 82(2):138-43. PubMed ID: 23380388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Podocyte foot process effacement is not correlated with the level of proteinuria in human glomerulopathies.
    van den Berg JG; van den Bergh Weerman MA; Assmann KJ; Weening JJ; Florquin S
    Kidney Int; 2004 Nov; 66(5):1901-6. PubMed ID: 15496161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiopoietin-like 4 based therapeutics for proteinuria and kidney disease.
    Chugh SS; Macé C; Clement LC; Del Nogal Avila M; Marshall CB
    Front Pharmacol; 2014; 5():23. PubMed ID: 24611049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogenesis of childhood idiopathic nephrotic syndrome: a paradigm shift from T-cells to podocytes.
    Kaneko K; Tsuji S; Kimata T; Kitao T; Yamanouchi S; Kato S
    World J Pediatr; 2015 Feb; 11(1):21-8. PubMed ID: 25822700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent insights into the pathogenesis of nephrotic syndrome.
    Certikova-Chabova V; Tesar V
    Minerva Med; 2013 Jun; 104(3):333-47. PubMed ID: 23748287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.