These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21975280)

  • 1. Accuracy assessment of CKC high-density surface EMG decomposition in biceps femoris muscle.
    Marateb HR; McGill KC; Holobar A; Lateva ZC; Mansourian M; Merletti R
    J Neural Eng; 2011 Dec; 8(6):066002. PubMed ID: 21975280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating reflex responses in large populations of motor units by decomposition of the high-density surface electromyogram.
    Yavuz UŞ; Negro F; Sebik O; Holobar A; Frömmel C; Türker KS; Farina D
    J Physiol; 2015 Oct; 593(19):4305-18. PubMed ID: 26115007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust decomposition of single-channel intramuscular EMG signals at low force levels.
    Marateb HR; Muceli S; McGill KC; Merletti R; Farina D
    J Neural Eng; 2011 Dec; 8(6):066015. PubMed ID: 22063475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decomposing single-channel intramuscular electromyography signal sampled at a low frequency into its motor unit action potential trains with a generative adversarial network.
    Sun W; Tang R; Lang Y; He J; Qiang H
    J Electromyogr Kinesiol; 2019 Oct; 48():187-196. PubMed ID: 31408753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding firings of a large population of human motor units from high-density surface electromyogram in response to transcranial magnetic stimulation.
    Škarabot J; Ammann C; Balshaw TG; Divjak M; Urh F; Murks N; Foffani G; Holobar A
    J Physiol; 2023 May; 601(10):1719-1744. PubMed ID: 36946417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Assessment of Muscle Excitation From Surface Electromyograms in Isometric Muscle Contractions.
    Kranjec J; Holobar A
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1483-1491. PubMed ID: 31199261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental analysis of accuracy in the identification of motor unit spike trains from high-density surface EMG.
    Holobar A; Minetto MA; Botter A; Negro F; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):221-9. PubMed ID: 20144921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition.
    Chen M; Holobar A; Zhang X; Zhou P
    Neural Plast; 2016; 2016():3489540. PubMed ID: 27642525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segment-Wise Decomposition of Surface Electromyography to Identify Discharges Across Motor Neuron Populations.
    Chen C; Ma S; Yu Y; Sheng X; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2012-2021. PubMed ID: 35853067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating motor unit discharge patterns from high-density surface electromyogram.
    Holobar A; Farina D; Gazzoni M; Merletti R; Zazula D
    Clin Neurophysiol; 2009 Mar; 120(3):551-62. PubMed ID: 19208498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Real-Time Method for Decoding the Neural Drive to Muscles Using Single-Channel Intra-Muscular EMG Recordings.
    Karimimehr S; Marateb HR; Muceli S; Mansourian M; Mañanas MA; Farina D
    Int J Neural Syst; 2017 Sep; 27(6):1750025. PubMed ID: 28427290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rigorous a posteriori assessment of accuracy in EMG decomposition.
    McGill KC; Marateb HR
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):54-63. PubMed ID: 20639182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of motor unit spike trains estimated from high-density surface electromyography is highly reliable across operators.
    Hug F; Avrillon S; Del Vecchio A; Casolo A; Ibanez J; Nuccio S; Rossato J; Holobar A; Farina D
    J Electromyogr Kinesiol; 2021 Jun; 58():102548. PubMed ID: 33838590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle Activity Map Reconstruction from High Density Surface EMG Signals With Missing Channels Using Image Inpainting and Surface Reconstruction Methods.
    Ghaderi P; Marateb HR
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1513-1523. PubMed ID: 28113298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of single motor unit conduction velocity during sustained contractions of the tibialis anterior muscle with advanced spike triggered averaging.
    Farina D; Arendt-Nielsen L; Merletti R; Graven-Nielsen T
    J Neurosci Methods; 2002 Mar; 115(1):1-12. PubMed ID: 11897359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time motor unit identification from high-density surface EMG.
    Glaser V; Holobar A; Zazula D
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):949-58. PubMed ID: 23475379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simulation study on the relation between the motor unit depth and action potential from multi-channel surface electromyography recordings.
    He J; Luo Z
    J Clin Neurosci; 2018 Aug; 54():146-151. PubMed ID: 29805080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially repeatable components from ultrafast ultrasound are associated with motor unit activity in human isometric contractions
    Rohlén R; Carbonaro M; Cerone GL; Meiburger KM; Botter A; Grönlund C
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37437598
    [No Abstract]   [Full Text] [Related]  

  • 19. Surface EMG decomposition based on K-means clustering and convolution kernel compensation.
    Ning Y; Zhu X; Zhu S; Zhang Y
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):471-7. PubMed ID: 25486655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy assessment of a surface electromyogram decomposition system in human first dorsal interosseus muscle.
    Hu X; Rymer WZ; Suresh NL
    J Neural Eng; 2014 Apr; 11(2):026007. PubMed ID: 24556614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.