BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21976253)

  • 1. Analytical design method of optimum ridge filters for wobbled and collimated proton beams.
    Himukai T; Takada Y; Hotta K; Hara Y; Komori M; Kanai T; Kohno R
    Igaku Butsuri; 2008; 28(2):57-69. PubMed ID: 21976253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of spread-out Bragg peak flatness for a carbon-ion beam by the use of a ridge filter with a ripple filter.
    Hara Y; Takada Y; Hotta K; Tansho R; Nihei T; Suzuki Y; Nagafuchi K; Kawai R; Tanabe M; Mizutani S; Himukai T; Matsufuji N
    Phys Med Biol; 2012 Mar; 57(6):1717-31. PubMed ID: 22398392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Titt U; Zheng Y; Vassiliev ON; Newhauser WD
    Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation.
    Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK
    Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitor unit prediction model for wobbling proton therapy with ridge filters.
    Jo K; Chung E; Han Y; Ahn SH; Sheen H; Cho S
    Med Phys; 2021 Dec; 48(12):8107-8116. PubMed ID: 34628659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ridge filter design for proton therapy at Hyogo Ion Beam Medical Center.
    Akagi T; Higashi A; Tsugami H; Sakamoto H; Masuda Y; Hishikawa Y
    Phys Med Biol; 2003 Nov; 48(22):N301-12. PubMed ID: 14680273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line.
    Romano F; Cirrone GA; Cuttone G; Rosa FD; Mazzaglia SE; Petrovic I; Fira AR; Varisano A
    Phys Med Biol; 2014 Jun; 59(12):2863-82. PubMed ID: 24828462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microdosimetry of proton and carbon ions.
    Liamsuwan T; Hultqvist M; Lindborg L; Uehara S; Nikjoo H
    Med Phys; 2014 Aug; 41(8):081721. PubMed ID: 25086531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.
    Heo S; Yoo S; Song Y; Kim E; Shin J; Han S; Jung W; Nam S; Lee R; Lee K; Cho S
    Radiat Prot Dosimetry; 2017 Jul; 175(3):297-303. PubMed ID: 27885084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commissioning of a conformal irradiation system for heavy-ion radiotherapy using a layer-stacking method.
    Kanai T; Kanematsu N; Minohara S; Komori M; Torikoshi M; Asakura H; Ikeda N; Uno T; Takei Y
    Med Phys; 2006 Aug; 33(8):2989-97. PubMed ID: 16964877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of absorbed dose, quality factor, and dose equivalent in water phantom outside of the irradiation field in passive carbon-ion and proton radiotherapies.
    Yonai S; Kase Y; Matsufuji N; Kanai T; Nishio T; Namba M; Yamashita W
    Med Phys; 2010 Aug; 37(8):4046-55. PubMed ID: 20879566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and validation of a synchrotron proton beam line for FLASH radiotherapy preclinical research experiments.
    Titt U; Yang M; Wang X; Iga K; Fredette N; Schueler E; Lin SH; Zhu XR; Sahoo N; Koong AC; Zhang X; Mohan R
    Med Phys; 2022 Jan; 49(1):497-509. PubMed ID: 34800037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.
    Paganetti H; Jiang H; Lee SY; Kooy HM
    Med Phys; 2004 Jul; 31(7):2107-18. PubMed ID: 15305464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon-proton mixed target.
    Yoo SH; Cho I; Cho S; Song Y; Jung WG; Kim DH; Shin D; Lee SB; Pae KH; Park SY
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):635-44. PubMed ID: 25154880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: identification of the main source and reduction in the secondary neutron dose.
    Yonai S; Matsufuji N; Kanai T
    Med Phys; 2009 Oct; 36(10):4830-9. PubMed ID: 19928113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of ridge filters for spread-out Bragg peaks with Monte Carlo simulation in carbon ion therapy.
    Sakama M; Kanai T; Kase Y; Yusa K; Tashiro M; Torikai K; Shimada H; Yamada S; Ohno T; Nakano T
    Phys Med Biol; 2012 Oct; 57(20):6615-33. PubMed ID: 23022653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast numerical method for calculating the 3D proton dose profile in a single-ring wobbling spreading system.
    Riazi Z; Afarideh H; Sadighi-Bonabi R
    Australas Phys Eng Sci Med; 2011 Sep; 34(3):317-25. PubMed ID: 21573759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility studies of a passive scatter proton therapy nozzle without a range modulator wheel.
    Harvey MC; Polf JC; Smith AR; Mohan R
    Med Phys; 2008 Jun; 35(6):2243-52. PubMed ID: 18649454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental verification of dose calculation using the simplified Monte Carlo method with an improved initial beam model for a beam-wobbling system.
    Tansho R; Takada Y; Kohno R; Hotta K; Hara Y; Mizutani S; Akimoto T
    Phys Med Biol; 2013 Sep; 58(17):6047-64. PubMed ID: 23939011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic field effects on particle beams and their implications for dose calculation in MR-guided particle therapy.
    Fuchs H; Moser P; Gröschl M; Georg D
    Med Phys; 2017 Mar; 44(3):1149-1156. PubMed ID: 28090633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.