These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21976253)

  • 61. Investigation on using high-energy proton beam for total body irradiation (TBI).
    Zhang M; Qin N; Jia X; Zou WJ; Khan A; Yue NJ
    J Appl Clin Med Phys; 2016 Sep; 17(5):90-98. PubMed ID: 27685117
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation.
    Li HS; Romeijn HE; Dempsey JF
    Med Phys; 2006 Sep; 33(9):3508-18. PubMed ID: 17022247
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Energy Spectra of Protons and Generated Secondary Electrons around the Bragg Peak in Materials of Interest in Proton Therapy.
    de Vera P; Abril I; Garcia-Molina R
    Radiat Res; 2018 Sep; 190(3):282-297. PubMed ID: 29995591
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Moving GPU-OpenCL-based Monte Carlo dose calculation toward clinical use: Automatic beam commissioning and source sampling for treatment plan dose calculation.
    Tian Z; Li Y; Hassan-Rezaeian N; Jiang SB; Jia X
    J Appl Clin Med Phys; 2017 Mar; 18(2):69-84. PubMed ID: 28300376
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Recoil proton, alpha particle, and heavy ion impacts on microdosimetry and RBE of fast neutrons: analysis of kerma spectra calculated by Monte Carlo simulation.
    Pignol JP; Slabbert J
    Can J Physiol Pharmacol; 2001 Feb; 79(2):189-95. PubMed ID: 11233567
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparison of basic features of proton and helium ion pencil beams in water using GATE.
    Ströbele J; Schreiner T; Fuchs H; Georg D
    Z Med Phys; 2012 Sep; 22(3):170-8. PubMed ID: 22265081
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Monte Carlo commissioning of clinical electron beams using large field measurements.
    O'Shea TP; Sawkey DL; Foley MJ; Faddegon BA
    Phys Med Biol; 2010 Jul; 55(14):4083-105. PubMed ID: 20601775
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A review of ion sources for medical accelerators (invited).
    Muramatsu M; Kitagawa A
    Rev Sci Instrum; 2012 Feb; 83(2):02B909. PubMed ID: 22380341
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Formation of spread-out Bragg peak for helium-ion beam using microdosimetric kinetic model.
    Akagi T; Maeda T; Suga M; Yamashita T
    Phys Med; 2023 May; 109():102587. PubMed ID: 37087865
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Beam Delivery Method for Carbon-ion Radiotherapy with the Heavy-ion Medical Accelerator in Chiba.
    Noda K
    Int J Part Ther; 2016 Mar; 2(4):481-489. PubMed ID: 31772960
    [TBL] [Abstract][Full Text] [Related]  

  • 71. New accelerator facility for carbon-ion cancer-therapy.
    Noda K; Furukawa T; Fujisawa T; Iwata Y; Kanai T; Kanazawa M; Kitagawa A; Komori M; Minohara S; Murakami T; Muramatsu M; Sato S; Takei Y; Tashiro M; Torikoshi M; Yamada S; Yusa K
    J Radiat Res; 2007; 48 Suppl A():A43-54. PubMed ID: 17513899
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Design and test of a compact beam current monitor based on a passive RF cavity for a proton therapy linear accelerator.
    Cardelli F; Ampollini A; Bazzano G; Nenzi P; Piersanti L; Ronsivalle C; Picardi L
    Rev Sci Instrum; 2021 Nov; 92(11):113304. PubMed ID: 34852547
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Design and characterization of a prototype tertiary device for proton beam stereotactic radiosurgery.
    Willoughby TR; Boczkowski A; Meeks SL; Bova FJ; Zeidan OA; Erhart K; Kelly P
    Biomed Phys Eng Express; 2021 Jun; 7(4):. PubMed ID: 34087816
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Construction of Heavy Ion Accelerator in Chiba (HIMAC) and Its Consequences-From Medical Physics Viewpoint: Part 2. Advancement of Broad Beam Irradiation and Development of a New Compact-sized Therapy Accelerator (1994-2010)].
    Endo M
    Igaku Butsuri; 2020; 40(3):97-105. PubMed ID: 32999256
    [No Abstract]   [Full Text] [Related]  

  • 75. [Application Status and Development Trends of Medical Proton and Heavy Ion Accelerators].
    Yang X; Chen H; Chen J; Qiao Y; Ma L
    Zhongguo Yi Liao Qi Xie Za Zhi; 2019 Jan; 43(1):37-42. PubMed ID: 30770689
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.
    Donahue W; Newhauser WD; Ziegler JF
    Phys Med Biol; 2016 Sep; 61(17):6570-84. PubMed ID: 27530803
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Construction of Heavy Ion Accelerator in Chiba (HIMAC) and Its Consequences-From Medical Physics Viewpoint: Part 3. Development of Scanning Irradiation and Construction of New Facility (2006-)].
    Endo M
    Igaku Butsuri; 2020; 40(4):126-138. PubMed ID: 33390378
    [No Abstract]   [Full Text] [Related]  

  • 78. Performance and application of heavy ion nuclear microbeam facility at the Nuclear Physics Institute in Řež, Czech Republic.
    Romanenko O; Havranek V; Mackova A; Davidkova M; Cutroneo M; Ponomarev AG; Nagy G; Stammers J
    Rev Sci Instrum; 2019 Jan; 90(1):013701. PubMed ID: 30709223
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Construction of Heavy Ion Accelerator in Chiba (HIMAC) and Its Consequences-From Medical Physics Viewpoint: Part 1. Period until Treatment Start (1975-1994)].
    Endo M
    Igaku Butsuri; 2020; 40(2):61-67. PubMed ID: 32611944
    [No Abstract]   [Full Text] [Related]  

  • 80. [Construction of Heavy Ion Accelerator in Chiba (HIMAC) and Its Consequences- From Medical Physics Viewpoint: Part 4. Outline of Clinical Research and Future Prospects].
    Endo M
    Igaku Butsuri; 2021; 41(1):10-21. PubMed ID: 33853978
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.