These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21976375)

  • 1. PROTS: a fragment based protein thermo-stability potential.
    Li Y; Zhang J; Tai D; Middaugh CR; Zhang Y; Fang J
    Proteins; 2012 Jan; 80(1):81-92. PubMed ID: 21976375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PROTS-RF: a robust model for predicting mutation-induced protein stability changes.
    Li Y; Fang J
    PLoS One; 2012; 7(10):e47247. PubMed ID: 23077576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraint Network Analysis (CNA): a Python software package for efficiently linking biomacromolecular structure, flexibility, (thermo-)stability, and function.
    Pfleger C; Rathi PC; Klein DL; Radestock S; Gohlke H
    J Chem Inf Model; 2013 Apr; 53(4):1007-15. PubMed ID: 23517329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations.
    Iqbal S; Li F; Akutsu T; Ascher DB; Webb GI; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34058752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProtDataTherm: A database for thermostability analysis and engineering of proteins.
    Pezeshgi Modarres H; Mofrad MR; Sanati-Nezhad A
    PLoS One; 2018; 13(1):e0191222. PubMed ID: 29377907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The linear interaction energy method for the prediction of protein stability changes upon mutation.
    Wickstrom L; Gallicchio E; Levy RM
    Proteins; 2012 Jan; 80(1):111-25. PubMed ID: 22038697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in silico method for designing thermostable variant of a dimeric mesophilic protein based on its 3D structure.
    Basu S; Sen S
    J Mol Graph Model; 2013 May; 42():92-103. PubMed ID: 23584153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational tools help improve protein stability but with a solubility tradeoff.
    Broom A; Jacobi Z; Trainor K; Meiering EM
    J Biol Chem; 2017 Sep; 292(35):14349-14361. PubMed ID: 28710274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of thermophilic proteins using feature selection technique.
    Lin H; Chen W
    J Microbiol Methods; 2011 Jan; 84(1):67-70. PubMed ID: 21044646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of proteins by enhancement of inter-residue hydrophobic contacts: lessons of T4 lysozyme and barnase.
    Golovanov AP; Vergoten G; Arseniev AS
    J Biomol Struct Dyn; 2000 Dec; 18(3):477-91. PubMed ID: 11149522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel scoring function for discriminating hyperthermophilic and mesophilic proteins with application to predicting relative thermostability of protein mutants.
    Li Y; Middaugh CR; Fang J
    BMC Bioinformatics; 2010 Jan; 11():62. PubMed ID: 20109199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer aided protein engineering to enhance the thermo-stability of CXCR1- T4 lysozyme complex.
    Wang Y; Park JH; Lupala CS; Yun JH; Jin Z; Huang L; Li X; Tang L; Lee W; Liu H
    Sci Rep; 2019 Mar; 9(1):5317. PubMed ID: 30926935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.
    Lee CW; Wang HJ; Hwang JK; Tseng CP
    PLoS One; 2014; 9(11):e112751. PubMed ID: 25393107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turning a mesophilic protein into a thermophilic one: a computational approach based on 3D structural features.
    Basu S; Sen S
    J Chem Inf Model; 2009 Jul; 49(7):1741-50. PubMed ID: 19586011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state.
    Wallgren M; Adén J; Pylypenko O; Mikaelsson T; Johansson LB; Rak A; Wolf-Watz M
    J Mol Biol; 2008 Jun; 379(4):845-58. PubMed ID: 18471828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the Effect of Amino Acid Single-Point Mutations on Protein Stability-Large-Scale Validation of MD-Based Relative Free Energy Calculations.
    Steinbrecher T; Zhu C; Wang L; Abel R; Negron C; Pearlman D; Feyfant E; Duan J; Sherman W
    J Mol Biol; 2017 Apr; 429(7):948-963. PubMed ID: 27964946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Proteins for Thermostability with iRDP Web Server.
    Panigrahi P; Sule M; Ghanate A; Ramasamy S; Suresh CG
    PLoS One; 2015; 10(10):e0139486. PubMed ID: 26436543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the melting point of human C-type lysozyme mutants.
    Verma D; Jacobs DJ; Livesay DR
    Curr Protein Pept Sci; 2010 Nov; 11(7):562-72. PubMed ID: 20887260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational design of the Fyn SH3 domain with increased stability through optimization of surface charge charge interactions.
    Schweiker KL; Zarrine-Afsar A; Davidson AR; Makhatadze GI
    Protein Sci; 2007 Dec; 16(12):2694-702. PubMed ID: 18029422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similarity and difference in the unfolding of thermophilic and mesophilic cold shock proteins studied by molecular dynamics simulations.
    Huang X; Zhou HX
    Biophys J; 2006 Oct; 91(7):2451-63. PubMed ID: 16844745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.