BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21976458)

  • 1. In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts.
    Galanzha EI; Sarimollaoglu M; Nedosekin DA; Keyrouz SG; Mehta JL; Zharov VP
    Cytometry A; 2011 Oct; 79(10):814-24. PubMed ID: 21976458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo multispectral photoacoustic and photothermal flow cytometry with multicolor dyes: a potential for real-time assessment of circulation, dye-cell interaction, and blood volume.
    Proskurnin MA; Zhidkova TV; Volkov DS; Sarimollaoglu M; Galanzha EI; Mock D; Nedosekin DA; Zharov VP
    Cytometry A; 2011 Oct; 79(10):834-47. PubMed ID: 21905207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic flow cytometry.
    Galanzha EI; Zharov VP
    Methods; 2012 Jul; 57(3):280-96. PubMed ID: 22749928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters.
    Galanzha EI; Zharov VP
    Cytometry A; 2011 Oct; 79(10):746-57. PubMed ID: 21948731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers.
    Nedosekin DA; Sarimollaoglu M; Ye JH; Galanzha EI; Zharov VP
    Cytometry A; 2011 Oct; 79(10):825-33. PubMed ID: 21786417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic and photothermal cytometry using photoswitchable proteins and nanoparticles with ultrasharp resonances.
    Galanzha EI; Nedosekin DA; Sarimollaoglu M; Orza AI; Biris AS; Verkhusha VV; Zharov VP
    J Biophotonics; 2015 Jan; 8(1-2):81-93. PubMed ID: 24259123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Label-Free Embolus Detection Using In Vivo Photoacoustic Flow Cytometry.
    Juratli MA; Menyaev YA; Sarimollaoglu M; Siegel ER; Nedosekin DA; Suen JY; Melerzanov AV; Juratli TA; Galanzha EI; Zharov VP
    PLoS One; 2016; 11(5):e0156269. PubMed ID: 27227413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo photoacoustic flow cytometry for early malaria diagnosis.
    Cai C; Carey KA; Nedosekin DA; Menyaev YA; Sarimollaoglu M; Galanzha EI; Stumhofer JS; Zharov VP
    Cytometry A; 2016 Jun; 89(6):531-42. PubMed ID: 27078044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics.
    de la Zerda A; Kim JW; Galanzha EI; Gambhir SS; Zharov VP
    Contrast Media Mol Imaging; 2011; 6(5):346-69. PubMed ID: 22025336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts.
    Nedosekin DA; Sarimollaoglu M; Galanzha EI; Sawant R; Torchilin VP; Verkhusha VV; Ma J; Frank MH; Biris AS; Zharov VP
    J Biophotonics; 2013 May; 6(5):425-34. PubMed ID: 22903924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic blood flow phantom for in vivo liquid biopsy standardization.
    Kozlova A; Bratashov D; Grishin O; Abdurashitov A; Prikhozhdenko E; Verkhovskii R; Shushunova N; Shashkov E; Zharov VP; Inozemtseva O
    Sci Rep; 2021 Jan; 11(1):1185. PubMed ID: 33441866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo plant flow cytometry: a first proof-of-concept.
    Nedosekin DA; Khodakovskaya MV; Biris AS; Wang D; Xu Y; Villagarcia H; Galanzha EI; Zharov VP
    Cytometry A; 2011 Oct; 79(10):855-65. PubMed ID: 21905208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic blood flow phantom with negative and positive photoacoustic contrasts.
    Jawad HJ; Sarimollaoglu M; Biris AS; Zharov VP
    Biomed Opt Express; 2018 Oct; 9(10):4702-4713. PubMed ID: 30319897
    [No Abstract]   [Full Text] [Related]  

  • 14. In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes.
    Galanzha EI; Shashkov EV; Tuchin VV; Zharov VP
    Cytometry A; 2008 Oct; 73(10):884-94. PubMed ID: 18677768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiphoton flow cytometry strategies and applications.
    Tkaczyk ER; Tkaczyk AH
    Cytometry A; 2011 Oct; 79(10):775-88. PubMed ID: 21796772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser.
    Nedosekin DA; Sarimollaoglu M; Shashkov EV; Galanzha EI; Zharov VP
    Opt Express; 2010 Apr; 18(8):8605-20. PubMed ID: 20588705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo flow cytometry: a horizon of opportunities.
    Tuchin VV; Tárnok A; Zharov VP
    Cytometry A; 2011 Oct; 79(10):737-45. PubMed ID: 21915991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell labeling approaches for fluorescence-based in vivo flow cytometry.
    Pitsillides CM; Runnels JM; Spencer JA; Zhi L; Wu MX; Lin CP
    Cytometry A; 2011 Oct; 79(10):758-65. PubMed ID: 21905206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive label-free detection of circulating white and red blood clots in deep vessels with a focused photoacoustic probe.
    Juratli MA; Menyaev YA; Sarimollaoglu M; Melerzanov AV; Nedosekin DA; Culp WC; Suen JY; Galanzha EI; Zharov VP
    Biomed Opt Express; 2018 Nov; 9(11):5667-5677. PubMed ID: 30460154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo.
    Kim JW; Galanzha EI; Zaharoff DA; Griffin RJ; Zharov VP
    Mol Pharm; 2013 Mar; 10(3):813-30. PubMed ID: 23379366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.