BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21976619)

  • 1. γ-Hydroxybutyrate blood/plasma partitioning: effect of physiologic pH on transport by monocarboxylate transporters.
    Morse BL; Felmlee MA; Morris ME
    Drug Metab Dispos; 2012 Jan; 40(1):64-9. PubMed ID: 21976619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of gamma-hydroxybutyrate in rat kidney membrane vesicles: Role of monocarboxylate transporters.
    Wang Q; Darling IM; Morris ME
    J Pharmacol Exp Ther; 2006 Aug; 318(2):751-61. PubMed ID: 16707723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocarboxylate transporter (MCT) mediates the transport of gamma-hydroxybutyrate in human kidney HK-2 cells.
    Wang Q; Lu Y; Morris ME
    Pharm Res; 2007 Jun; 24(6):1067-78. PubMed ID: 17377745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The drug of abuse gamma-hydroxybutyrate is a substrate for sodium-coupled monocarboxylate transporter (SMCT) 1 (SLC5A8): characterization of SMCT-mediated uptake and inhibition.
    Cui D; Morris ME
    Drug Metab Dispos; 2009 Jul; 37(7):1404-10. PubMed ID: 19389857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic modeling of monocarboxylate transporter-mediated toxicokinetic/toxicodynamic interactions between γ-hydroxybutyrate and L-lactate.
    Morse BL; Vijay N; Morris ME
    AAPS J; 2014 Jul; 16(4):756-70. PubMed ID: 24854892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of monocarboxylate transporter inhibition on the oral toxicokinetics/toxicodynamics of γ-hydroxybutyrate and γ-butyrolactone.
    Morse BL; Morris ME
    J Pharmacol Exp Ther; 2013 Apr; 345(1):102-10. PubMed ID: 23392755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Drug of Abuse Gamma-Hydroxybutyric Acid Exhibits Tissue-Specific Nonlinear Distribution.
    Felmlee MA; Morse BL; Follman KE; Morris ME
    AAPS J; 2017 Dec; 20(1):21. PubMed ID: 29280004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacokinetic interaction between the flavonoid luteolin and gamma-hydroxybutyrate in rats: potential involvement of monocarboxylate transporters.
    Wang X; Wang Q; Morris ME
    AAPS J; 2008; 10(1):47-55. PubMed ID: 18446505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells.
    Wang Q; Morris ME
    Drug Metab Dispos; 2007 Aug; 35(8):1393-9. PubMed ID: 17502341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GHB toxicokinetics and renal monocarboxylate transporter expression are influenced by the estrus cycle in rats.
    Wei H; Cao J; Fallert T; Yeo S; Felmlee MA
    BMC Pharmacol Toxicol; 2023 Nov; 24(1):58. PubMed ID: 37919807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavonoids modulate monocarboxylate transporter-1-mediated transport of gamma-hydroxybutyrate in vitro and in vivo.
    Wang Q; Morris ME
    Drug Metab Dispos; 2007 Feb; 35(2):201-8. PubMed ID: 17108059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid.
    Morris ME; Felmlee MA
    AAPS J; 2008 Jun; 10(2):311-21. PubMed ID: 18523892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monocarboxylate transporter-mediated transport of gamma-hydroxybutyric acid in human intestinal Caco-2 cells.
    Lam WK; Felmlee MA; Morris ME
    Drug Metab Dispos; 2010 Mar; 38(3):441-7. PubMed ID: 19952290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro and In Vivo Evidence for Active Brain Uptake of the GHB Analog HOCPCA by the Monocarboxylate Transporter Subtype 1.
    Thiesen L; Kehler J; Clausen RP; Frølund B; Bundgaard C; Wellendorph P
    J Pharmacol Exp Ther; 2015 Aug; 354(2):166-74. PubMed ID: 25986445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chronic γ-hydroxybutyrate (GHB) administration on GHB toxicokinetics and GHB-induced respiratory depression.
    Morse BL; Chadha GS; Felmlee MA; Follman KE; Morris ME
    Am J Drug Alcohol Abuse; 2017 Nov; 43(6):686-693. PubMed ID: 28662343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein.
    Jackson VN; Halestrap AP
    J Biol Chem; 1996 Jan; 271(2):861-8. PubMed ID: 8557697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-mechanistic kidney model incorporating physiologically-relevant fluid reabsorption and transporter-mediated renal reabsorption: pharmacokinetics of γ-hydroxybutyric acid and L-lactate in rats.
    Dave RA; Morris ME
    J Pharmacokinet Pharmacodyn; 2015 Oct; 42(5):497-513. PubMed ID: 26341876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-drug interaction between diclofenac and gamma-hydroxybutyric acid.
    Rodriguez-Cruz V; Ren T; Morris ME
    Biopharm Drug Dispos; 2021 Sep; 42(8):351-358. PubMed ID: 34191301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of L-lactate and D-mannitol on gamma-hydroxybutyrate toxicokinetics and toxicodynamics in rats.
    Wang Q; Wang X; Morris ME
    Drug Metab Dispos; 2008 Nov; 36(11):2244-51. PubMed ID: 18719239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Monocarboxylate Transporter Inhibitor as a Potential Treatment Strategy for γ-Hydroxybutyric Acid Overdose.
    Vijay N; Morse BL; Morris ME
    Pharm Res; 2015 Jun; 32(6):1894-906. PubMed ID: 25480120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.