BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21976978)

  • 1. SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor.
    Domenici F; Bizzarri AR; Cannistraro S
    Int J Nanomedicine; 2011; 6():2033-42. PubMed ID: 21976978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum.
    Domenici F; Bizzarri AR; Cannistraro S
    Anal Biochem; 2012 Feb; 421(1):9-15. PubMed ID: 22056410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface enhanced Raman spectroscopy based immunosensor for ultrasensitive and selective detection of wild type p53 and mutant p53
    Bizzarri AR; Moscetti I; Cannistraro S
    Anal Chim Acta; 2018 Oct; 1029():86-96. PubMed ID: 29907296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanosponges (AuNS): a versatile nanostructure for surface-enhanced Raman spectroscopic detection of small molecules and biomolecules.
    Wallace GQ; Zuin MS; Tabatabaei M; Gobbo P; Lagugné-Labarthet F; Workentin MS
    Analyst; 2015 Nov; 140(21):7278-82. PubMed ID: 26347904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis.
    Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Cancer Diagnostics of the Tumor Suppressor p53 by Surface Enhanced Raman Spectroscopy.
    Bizzarri AR; Cannistraro S
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing of p53 and EGFR Biomarkers Using High Efficiency SERS Substrates.
    Owens P; Phillipson N; Perumal J; O'Connor GM; Olivo M
    Biosensors (Basel); 2015 Oct; 5(4):664-77. PubMed ID: 26516922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay.
    Shi Q; Huang J; Sun Y; Deng R; Teng M; Li Q; Yang Y; Hu X; Zhang Z; Zhang G
    Mikrochim Acta; 2018 Jan; 185(2):84. PubMed ID: 29594367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-Free Surface-Enhanced Raman Spectroscopy Biosensor for On-Site Breast Cancer Detection Using Human Tears.
    Kim S; Kim TG; Lee SH; Kim W; Bang A; Moon SW; Song J; Shin JH; Yu JS; Choi S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7897-7904. PubMed ID: 31971765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma.
    Kamińska A; Sprynskyy M; Winkler K; Szymborski T
    Anal Bioanal Chem; 2017 Nov; 409(27):6337-6347. PubMed ID: 28852782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratiometric Surface Enhanced Raman Scattering Immunosorbent Assay of Allergenic Proteins via Covalent Organic Framework Composite Material Based Nanozyme Tag Triggered Raman Signal "Turn-on" and Amplification.
    Su Y; Wu D; Chen J; Chen G; Hu N; Wang H; Wang P; Han H; Li G; Wu Y
    Anal Chem; 2019 Sep; 91(18):11687-11695. PubMed ID: 31418273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile and sensitive glucose sandwich assay using in situ-generated Raman reporters.
    Bi X; Du X; Jiang J; Huang X
    Anal Chem; 2015 Feb; 87(3):2016-21. PubMed ID: 25583068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aptamer-based SERS biosensor for whole cell analytical detection of E. coli O157:H7.
    Díaz-Amaya S; Lin LK; Deering AJ; Stanciu LA
    Anal Chim Acta; 2019 Nov; 1081():146-156. PubMed ID: 31446952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SERS detection of thrombin by protein recognition using functionalized gold nanoparticles.
    Bizzarri AR; Cannistraro S
    Nanomedicine; 2007 Dec; 3(4):306-10. PubMed ID: 18068092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-column enrichment and surface-enhanced Raman scattering detection in nanoparticles functionalized porous capillary monolith.
    Jiang Q; Zeng T; Yang S; Chen Q; Chen L; Ye Y; Zhou J; Xu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 141():244-51. PubMed ID: 25681809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rolling-circle amplification detection of thrombin using surface-enhanced Raman spectroscopy with core-shell nanoparticle probe.
    Li X; Wang L; Li C
    Chemistry; 2015 Apr; 21(18):6817-22. PubMed ID: 25766032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.