These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21977003)

  • 1. Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna.
    Burkart J; Steiner G; Reischl G; Hitzenberger R
    Atmos Environ (1994); 2011 Oct; 45(32):5751-5759. PubMed ID: 21977003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation.
    Fanourgakis GS; Kanakidou M; Nenes A; Bauer SE; Bergman T; Carslaw KS; Grini A; Hamilton DS; Johnson JS; Karydis VA; Kirkevåg A; Kodros JK; Lohmann U; Luo G; Makkonen R; Matsui H; Neubauer D; Pierce JR; Schmale J; Stier P; Tsigaridis K; van Noije T; Wang H; Watson-Parris D; Westervelt DM; Yang Y; Yoshioka M; Daskalakis N; Decesari S; Gysel-Beer M; Kalivitis N; Liu X; Mahowald NM; Myriokefalitakis S; Schrödner R; Sfakianaki M; Tsimpidi AP; Wu M; Yu F
    Atmos Chem Phys; 2019 Jul; 19(13):8591-8617. PubMed ID: 33273898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation properties of aerosol particles as cloud condensation nuclei at urban and high-altitude remote sites in southern Europe.
    Rejano F; Titos G; Casquero-Vera JA; Lyamani H; Andrews E; Sheridan P; Cazorla A; Castillo S; Alados-Arboledas L; Olmo FJ
    Sci Total Environ; 2021 Mar; 762():143100. PubMed ID: 33121775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of pollutants on activity of aerosol cloud condensation nuclei (CCN) during pollution and post-rain periods in Guangzhou, southern China.
    Duan J; Wang Y; Xie X; Li M; Tao J; Wu Y; Cheng T; Zhang R; Liu Y; Li X; He Q; Gao W; Wang J
    Sci Total Environ; 2018 Nov; 642():1008-1019. PubMed ID: 30045484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of urban aerosols on the cloud condensation activity using a clustering model.
    Rejano F; Casquero-Vera JA; Lyamani H; Andrews E; Casans A; Pérez-Ramírez D; Alados-Arboledas L; Titos G; Olmo FJ
    Sci Total Environ; 2023 Feb; 858(Pt 1):159657. PubMed ID: 36306849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of aerosol and cloud condensation nuclei between wet and dry seasons in Guangzhou, southern China.
    Duan J; Tao J; Wu Y; Cheng T; Zhang R; Wang Y; Zhu H; Xie X; Liu Y; Li X; Kong L; Li M; He Q
    Sci Total Environ; 2017 Dec; 607-608():11-22. PubMed ID: 28686891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of various air mass types on cloud condensation nuclei concentrations along coastal southeast Florida.
    Edwards EL; Corral AF; Dadashazar H; Barkley AE; Gaston CJ; Zuidema P; Sorooshian A
    Atmos Environ (1994); 2021 Jun; 254():. PubMed ID: 34211332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size distribution and chemical composition of primary particles emitted during open biomass burning processes: Impacts on cloud condensation nuclei activation.
    Chen L; Li Q; Wu D; Sun H; Wei Y; Ding X; Chen H; Cheng T; Chen J
    Sci Total Environ; 2019 Jul; 674():179-188. PubMed ID: 31004894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative role of black carbon and sea-salt aerosols as cloud condensation nuclei over a high altitude urban atmosphere in eastern Himalaya.
    Chatterjee A; Dutta M; Ghosh A; Ghosh SK; Roy A
    Sci Total Environ; 2020 Nov; 742():140468. PubMed ID: 32721716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ characterization of cloud condensation nuclei, interstitial, and background particles using the single particle mass spectrometer, SPLAT II.
    Zelenyuk A; Imre D; Earle M; Easter R; Korolev A; Leaitch R; Liu P; Macdonald AM; Ovchinnikov M; Strapp W
    Anal Chem; 2010 Oct; 82(19):7943-51. PubMed ID: 20718425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of size-resolved number concentration of cloud condensation nuclei and long-term measurements of their activation characteristics.
    Che HC; Zhang XY; Zhang L; Wang YQ; Zhang YM; Shen XJ; Ma QL; Sun JY; Zhong JT
    Sci Rep; 2017 Jul; 7(1):5819. PubMed ID: 28724981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Investigation of Aerosol Mixed State and CCN Activity in Nanjing].
    Zhu L; Ma Y; Zheng J; Li SZ; Wang LP
    Huan Jing Ke Xue; 2016 Apr; 37(4):1199-207. PubMed ID: 27548938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size matters more than chemistry for cloud-nucleating ability of aerosol particles.
    Dusek U; Frank GP; Hildebrandt L; Curtius J; Schneider J; Walter S; Chand D; Drewnick F; Hings S; Jung D; Borrmann S; Andreae MO
    Science; 2006 Jun; 312(5778):1375-8. PubMed ID: 16741120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the competition among aerosol number, size and composition in predicting CCN variability: a multi-annual field study in an urbanized desert.
    Crosbie E; Youn JS; Balch B; Wonaschütz A; Shingler T; Wang Z; Conant WC; Betterton EA; Sorooshian A
    Atmos Chem Phys; 2015 Feb; 15():6943-6958. PubMed ID: 26316879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting cloud condensation nuclei number concentration based on conventional measurements of aerosol properties in the North China Plain.
    Zhang Y; Tao J; Ma N; Kuang Y; Wang Z; Cheng P; Xu W; Yang W; Zhang S; Xiong C; Dong W; Xie L; Sun Y; Fu P; Zhou G; Cheng Y; Su H
    Sci Total Environ; 2020 Jun; 719():137473. PubMed ID: 32126407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of the aerosol mixing state and new particle formation on CCN in summer at the summit of Mount Tai (1534m) in Central East China.
    Wu Z; Wang H; Yin Y; Shen L; Chen K; Chen J; Zhen Z; Cui Y; Ke Y; Liu S; Zhao T; Lin W
    Sci Total Environ; 2024 Mar; 918():170622. PubMed ID: 38325490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Novel Molecular-Level Chemical Composition Observations of High Arctic Organic Aerosol for Predictions of Cloud Condensation Nuclei.
    Siegel K; Neuberger A; Karlsson L; Zieger P; Mattsson F; Duplessis P; Dada L; Daellenbach K; Schmale J; Baccarini A; Krejci R; Svenningsson B; Chang R; Ekman AML; Riipinen I; Mohr C
    Environ Sci Technol; 2022 Oct; 56(19):13888-13899. PubMed ID: 36112784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Aerosol Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of CCN and Stratocumulus Cloud Droplet Number Concentrations.
    Schulze BC; Charan SM; Kenseth CM; Kong W; Bates KH; Williams W; Metcalf AR; Jonsson HH; Woods R; Sorooshian A; Flagan RC; Seinfeld JH
    Earth Space Sci; 2020 Jul; 7(7):e2020EA001098. PubMed ID: 33225018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactants from the gas phase may promote cloud droplet formation.
    Sareen N; Schwier AN; Lathem TL; Nenes A; McNeill VF
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2723-8. PubMed ID: 23382211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.