These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21977016)

  • 1. Modeling the connectome of a simple spinal cord.
    Borisyuk R; Al Azad AK; Conte D; Roberts A; Soffe SR
    Front Neuroinform; 2011; 5():20. PubMed ID: 21977016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.
    Borisyuk R; Al Azad AK; Conte D; Roberts A; Soffe SR
    PLoS One; 2014; 9(2):e89461. PubMed ID: 24586794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network.
    Li WC; Cooke T; Sautois B; Soffe SR; Borisyuk R; Roberts A
    Neural Dev; 2007 Sep; 2():17. PubMed ID: 17845723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochasticity and functionality of neural systems: mathematical modelling of axon growth in the spinal cord of tadpole.
    Borisyuk R; Cooke T; Roberts A
    Biosystems; 2008; 93(1-2):101-14. PubMed ID: 18547713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can simple rules control development of a pioneer vertebrate neuronal network generating behavior?
    Roberts A; Conte D; Hull M; Merrison-Hort R; al Azad AK; Buhl E; Borisyuk R; Soffe SR
    J Neurosci; 2014 Jan; 34(2):608-21. PubMed ID: 24403159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Computational Model of the Human Spinal Cord Connectome.
    Arle JE; Iftimia N; Shils JL; Mei L; Carlson KW
    Neural Comput; 2019 Feb; 31(2):388-416. PubMed ID: 30576619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple method defines 3D morphology and axon projections of filled neurons in a small CNS volume: Steps toward understanding functional network circuitry.
    Conte D; Borisyuk R; Hull M; Roberts A
    J Neurosci Methods; 2021 Mar; 351():109062. PubMed ID: 33383055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional scaffold of CNS neurons for the vertebrates: the developing Xenopus laevis spinal cord.
    Roberts A; Li WC; Soffe SR
    Dev Neurobiol; 2012 Apr; 72(4):575-84. PubMed ID: 21485014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the genetic code of neuronal type connectivity through bilinear modeling.
    Qiao M
    Elife; 2024 Jun; 12():. PubMed ID: 38857169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of Connectome Development.
    Kaiser M
    Trends Cogn Sci; 2017 Sep; 21(9):703-717. PubMed ID: 28610804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency.
    Kim JS; Kaiser M
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1653):. PubMed ID: 25180307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connectomic features underlying diverse synaptic connection strengths and subcellular computation.
    Liu TX; Davoudian PA; Lizbinski KM; Jeanne JM
    Curr Biol; 2022 Feb; 32(3):559-569.e5. PubMed ID: 34914905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated motor activity in simulated spinal networks emerges from simple biologically plausible rules of connectivity.
    Dale N
    J Comput Neurosci; 2003; 14(1):55-70. PubMed ID: 12435924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional properties of a probabilistic model of neuronal connectivity in a simple locomotor network.
    Ferrario A; Merrison-Hort R; Soffe SR; Borisyuk R
    Elife; 2018 Mar; 7():. PubMed ID: 29589828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decay of connection probabilities with distance in 2D and 3D neuronal networks.
    Goriachkin V; Turova T
    Biosystems; 2019 Oct; 184():103991. PubMed ID: 31351994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regeneration of spinal neurons in inframammalian vertebrates: morphological and developmental aspects.
    Anderson MJ; Waxman SG
    J Hirnforsch; 1983; 24(4):371-98. PubMed ID: 6643991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles.
    Li WC; Perrins R; Soffe SR; Yoshida M; Walford A; Roberts A
    J Comp Neurol; 2001 Dec; 441(3):248-65. PubMed ID: 11745648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord.
    Davis O; Merrison-Hort R; Soffe SR; Borisyuk R
    Sci Rep; 2017 Oct; 7(1):13551. PubMed ID: 29051550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap.
    Tecuatl C; Wheeler DW; Sutton N; Ascoli GA
    J Neurosci; 2021 Feb; 41(8):1665-1683. PubMed ID: 33361464
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.