These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21977407)

  • 1. The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl-Tomlinson model and the simulation of vibration-induced friction reduction.
    van Spengen WM; Turq V; Frenken JW
    Beilstein J Nanotechnol; 2010; 1():163-71. PubMed ID: 21977407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate and State Friction Relation for Nanoscale Contacts: Thermally Activated Prandtl-Tomlinson Model with Chemical Aging.
    Tian K; Goldsby DL; Carpick RW
    Phys Rev Lett; 2018 May; 120(18):186101. PubMed ID: 29775377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic Force Microscopy Sidewall Imaging with a Quartz Tuning Fork Force Sensor.
    Hussain D; Wen Y; Zhang H; Song J; Xie H
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29301265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of friction reduction of nanoscale sliding contacts achieved through ultrasonic excitation.
    Jiryaei Sharahi H; Egberts P; Kim S
    Nanotechnology; 2019 Feb; 30(7):075502. PubMed ID: 30523838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic roughness enhanced friction on hydrogenated graphene.
    Dong Y; Wu X; Martini A
    Nanotechnology; 2013 Sep; 24(37):375701. PubMed ID: 23965631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-Scale Friction Characteristics of Graphene under Conductive AFM with Applied Voltages.
    Lang H; Peng Y; Cao X; Zou K
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25503-25511. PubMed ID: 32394710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds.
    Liu XZ; Ye Z; Dong Y; Egberts P; Carpick RW; Martini A
    Phys Rev Lett; 2015 Apr; 114(14):146102. PubMed ID: 25910138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation and AFM Experimental Research on Slip Friction for Unlubricated Spherical Contact with Roughness Effect.
    Zhu S; Ni L
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Will Polycrystalline Platinum Tip Sliding on a Gold(111) Surface Produce Regular Stick-Slip Friction?
    Xu RG; Zhang G; Xiang Y; Garcia J; Leng Y
    Langmuir; 2022 Jun; 38(22):6808-6816. PubMed ID: 35617666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocity-dependent friction enhances tribomechanical differences between monolayer and multilayer graphene.
    Ptak F; Almeida CM; Prioli R
    Sci Rep; 2019 Oct; 9(1):14555. PubMed ID: 31601937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale characterization of different stiction mechanisms in electrostatically driven MEMS devices based on adhesion and friction measurements.
    Zaghloul U; Bhushan B; Pons P; Papaioannou GJ; Coccetti F; Plana R
    J Colloid Interface Sci; 2011 Jun; 358(1):1-13. PubMed ID: 21444091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the charge and roughness of surfaces on normal and friction forces measured in aqueous solutions.
    McNamee CE; Higashitani K
    Langmuir; 2013 Apr; 29(16):5013-22. PubMed ID: 23530856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and rupture of capillary bridges in atomic scale friction.
    Barel I; Filippov AE; Urbakh M
    J Chem Phys; 2012 Oct; 137(16):164706. PubMed ID: 23126736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of focused ion-beam sampling for sidewall-roughness measurement of free-standing sub-μm objects by atomic force microscopy.
    Nagatomi T; Nakao T; Fujimoto Y
    Microscopy (Oxf); 2020 Mar; 69(1):11-16. PubMed ID: 31943021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roughness of simulated surfaces examined with a haptic tool: effects of spatial period, friction, and resistance amplitude.
    Smith AM; Basile G; Theriault-Groom J; Fortier-Poisson P; Campion G; Hayward V
    Exp Brain Res; 2010 Apr; 202(1):33-43. PubMed ID: 20012535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorination of graphene enhances friction due to increased corrugation.
    Li Q; Liu XZ; Kim SP; Shenoy VB; Sheehan PE; Robinson JT; Carpick RW
    Nano Lett; 2014 Sep; 14(9):5212-7. PubMed ID: 25072968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotribological characterization of digital micromirror devices using an atomic force microscope.
    Liu H; Bhushan B
    Ultramicroscopy; 2004 Aug; 100(3-4):391-412. PubMed ID: 15231332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Friction at nanopillared polymer surfaces beyond Amontons' laws: Stick-slip amplitude coefficient (SSAC) and multiparametric nanotribological properties.
    Ishak MI; Dobryden I; Martin Claesson P; Briscoe WH; Su B
    J Colloid Interface Sci; 2021 Feb; 583():414-424. PubMed ID: 33011410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified multibond model for nanoscale static friction.
    Milne ZB; Hasz K; McClimon JB; Castro J; Carpick RW
    Philos Trans A Math Phys Eng Sci; 2022 Sep; 380(2232):20210342. PubMed ID: 35909363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.