These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 21977426)

  • 1. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles.
    McHale G; Newton MI; Shirtcliffe NJ; Geraldi NR
    Beilstein J Nanotechnol; 2011; 2():145-51. PubMed ID: 21977426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting.
    McHale G; Orme BV; Wells GG; Ledesma-Aguilar R
    Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State.
    Tzitzilis D; Tsekeridis C; Ntakoumis I; Papadopoulos P
    Langmuir; 2024 Jul; 40(26):13422-13427. PubMed ID: 38825812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binary mixture droplet wetting on micro-structure decorated surfaces.
    Al Balushi KM; Sefiane K; Orejon D
    J Colloid Interface Sci; 2022 Apr; 612():792-805. PubMed ID: 35065463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography- and topology-driven spreading of non-Newtonian power-law liquids on a flat and a spherical substrate.
    Iwamatsu M
    Phys Rev E; 2017 Oct; 96(4-1):042803. PubMed ID: 29347502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity.
    Porcheron F; Monson PA
    Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetting on Micropatterned Surfaces: Partial Penetration in the Cassie State and Wenzel Deviation Theoretically Explained.
    Rohrs C; Azimi A; He P
    Langmuir; 2019 Nov; 35(47):15421-15430. PubMed ID: 31663751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory.
    Jiang G; Hu J; Chen L
    Langmuir; 2020 Jul; 36(29):8435-8443. PubMed ID: 32640799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small droplets on superhydrophobic substrates.
    Gross M; Varnik F; Raabe D; Steinbach I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051606. PubMed ID: 20866238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of superhydrophobic surfaces with Wenzel and Cassie-Baxter state: experimental evidence and theoretical insight.
    Zhang X; Ding B; Bian Y; Jiang D; Parkin IP
    Nanotechnology; 2018 Nov; 29(48):485601. PubMed ID: 30215618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces.
    He X; Wang YF; Zhang BX; Wang SL; Yang YR; Wang XD; Lee DJ
    Langmuir; 2021 Dec; 37(50):14571-14581. PubMed ID: 34894696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets.
    Zahiri B; Sow PK; Kung CH; Mérida W
    J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.